Structural parameters of aqueous colloidal dispersions of fullerene C60
Keywords:
fullerene, small-angle X-ray scattering, small-angle neutron scatteringAbstract
Two types of dispersions of C60 water systems were studied using small-angle X-ray scattering (MURR) and neutron scattering (MURN), as a result of which the structural parameters of fullerene aggregates were obtained. Aqueous dispersions were obtained by the method of solvent replacement and on the basis of a primary solution of fullerene C60 in N-methylpyrrolidone. The structure of water dispersions is analyzed depending on the synthesis method. It is shown that in all dispersions, fullerene aggregates are characterized by significant polydispersity in size. It is revealed that fullerenes in the son/nC60 dispersion form aggregates with a dense core (the case of a surface fractal) with a radius of 58 ± 1 nm and a fractal dimension of 2.3. In turn, the nmp/nC60 system is characterized by the presence of a bimodal particle size distribution and a branched structure of aggregates with a fractal dimension of 1.5.
References
Panchuk R.R., Prylutska S.V., Chumak V.V., Skorokhyd N.R., Lehka L.V., Evstigneev M.P., Prylutskyy Yu.I., Berger W., Heffeter P., Scharff P., Ritter U., Stoika R.S. Application of c60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo // J. Biomed. Nanotechnol. 2015. V.11. P.1139.
Prylutskyy Yu.I., Cherepanov V.V., Evstigneev M.P., Kyzyma O.A., Petrenko V.I., Styopkin V.I., Bulavin L.A., Davidenko N.A., Wyrzykowski D., Woziwodzka A., Piosik J., Ka´zmierkiewicz R., Ritter U. Structural self-organization of c60 and cisplatin in physiological solution // Phys.Chem.Chem.Phys. 2015. V. 17. P. 26084.
Prylutskyy Yu.I., Evstigneev M.P., Cherepanov V.V., Kyzyma O.A., Bulavin L.A., Davidenko N.A., Scharff P. Effects of c60 fullerene – cisplatin complex on honeybee apis mellifera l // J. Nanopart. Res. 2015. V. 17. P. 45.
Prylutska S.V., Burlaka A.P., Klymenko P.P., Grynyuk I.I., Prylutskyy Yu.I., Schuetze Ch., Ritter U. Using water-soluble C60 fullerenes in anticancer therapy // Cancer Nanotechnol. 2011. V. 2. P. 105.
Prylutska S.V., Burlaka A.P., Prylutskyy Yu.I., Ritter U., Scharff P. Pristine c60 fullerenes inhibit the rate of f tumor growth and metastasis // Exp. Oncol. 2011. V. 33. P. 162.
Lyon D.Y., Adams L.K., Falkner J.C., Alvarez P.J. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size // J. Environ. Sci. Technol. 2006. V. 40. P. 4360.
Kokubo K., Matsubayashi K., Tategaki H., Takada H.; Oshima T. Facile Synthesis of Highly Water- Soluble Fullerenes More Than Half-Covered by Hydroxyl Groups // ACS Nano. 2008. V. 2. P. 327–333.
Andersson T., Nilsson K., Sundahl M., Westman G., Wennerstrom O. J. C60 embedded in gamma-cyclodextrin: a watersoluble fullerene // J. Chem. Soc. Chem. Commun. 1992 P. 604.
Andrievsky G.V., Kosevich M.V., Vovk O.M. et. al. On the production of an aqueous colloidal solution of fullerenes // J. Chem. Soc. Chem. Commun. 1995. V. 12. P. 1281.
Isaacson C., Zhang W., Powell T., Ma X., Bouchard D. Temporal changes in Aqu/C60 physical-chemical, deposition, and transport characteristics in aqueous systems // Environ. Sci. Technol. 2011. V. 45. P. 5170.
Andrievsky G.V., Kosevich M.V., Vovk O.M., Shelkovsky V.S., Vashchenko L.A. Temporal changes in Aqu/C60 physical-chemical, On the production of an aqueous colloidal solution of fullerenes // J. Chem. Soc. Chem. Commun. 1995. V. 12. P. 1281.
Kyzyma E.A., Tomchuk A.A., Bulavin L.A., Petrenko V.I., Almasy L., Korobov M.V., Volkov D.S., Mikheev I.V., Koshlan I.V., Koshlan N.A., Blaha P., Avdeev M.V., Aksenov V.L. X_ray, Synchrotron and Neutron Techniques // Journal of Surface Investigation. 2015. V. 1. P. 5.
Blanton T.N., Barnes C.L., Lelental M. Preparation of silver behenate coatings to provide low- to mid-angle diffraction calibration // J. Appl. Cryst. 2000. V. 33. P. 172.
Franke D., Kikhney A.G., Svergun D.I. Automated acquisition and analysis of small angle X-ray scattering data // Nucl. Instrum. Methods Phys. A. 2012. V. 689. P. 52.
Аксeнов В.Л., Балагуров А.М. Дифракция нейтронов на импульсных источниках // УФН. 2016. V. 186(3) P. 293–320.
Ostanevich Yu.M. Time-of-flight smallangle scattering spectrometers on pulsed neutron sources // Macromol. Chem., Macromol. Symp. 1988. V. 15. P. 91.
Ferin J., Oberdorster G., Penney D. P. Pulmonary retention of ultrafine and fine particles in rats // Am J Respir Cell Mol Biol. 1992. V. 6. P. 535–542.
Baker G.L., Gupta A., Clark M.L., Valenzuela B.R., Staska L.M., Harbo S.J., Pierce J.T., Dill J.A. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles // Toxicol. Sci. 2008. V. 101. P. 122–131.
Andreev S. et al. // Fullerenes, Nanotubes and Carbon Nanostructures. 2015. V. 23. P. 792–800.
Kyzyma E.A., Tomchuk A.A., Bulavin L.A., Petrenko V.I., Almasy L., Korobov M.V., Volkov D.S., Mikheev I.V., Koshlan I.V., Koshlan N.A., Blaha P., Avdeev M.V., Aksenov V.L. Structure and Toxicity of Aqueous Fullerene C60 Solutions // J. Surf. Investigation. 2015. V. 9(1). P. 5–9.
Avdeev M.V., Khokhryakov A.A., Tropin T.V. et al. Structural Features of Molecular-Colloidal Solutions of C60 Fullerenes in Water by Small-Angle Neutron Scattering // Langmuir. 2004. V. 20. P. 4363.
Brumberger H. Modern Aspects of smallangle scattering // Springer: Kluwer Academic Publishers. 1995. P. 449.