Application of evolutionary optimization methods for peptide structure prediction

Authors

  • S.V. Poluyan Dubna State University
  • N.M. Ershov Lomonosov Moscow State University

Keywords:

protein secondary structure, protein structure prediction, conformational search, evolutionary computation, global optimization

Abstract

This paper is devoted to the question of the applicability of stochastic evolutionary optimization algorithms for peptide secondary structure prediction and proposes a scheme for changing force-field term during optimal structure search.

References

Ершов, Н. М. Неоднородные клеточныегенетические алгоритмы / Н.М. Ершов //Компьютерные исследования и моделирование. –2015. – Т. 7, No 3. – С. 775–780.

Полуян, С. В. Самоадаптация в алгоритмах роевой оптимизации / С.В. Полуян,Н.М. Рейнгард, Н.М. Ершов // ВестникРоссийского университета дружбы народов.Серия «Математика, информатика, физика». –2014. – No 2. – С. 415–418.

Anfinsen C. Principles that Govern the Folding of Protein Chains / C. Anfinsen // Science. –1973. – V. 181(4096). – P. 330–331.

Brest, J. Large scale global optimizationusing self-adaptive differential evolution algorithm /J. Brest [et al.] // IEEE World Congress on Computational Intelligence. – 2010. – P. 1–8.

Cheng, R. Competitive Swarm Optimizer forLarge Scale Optimization / R. Cheng, Y.A Jin //IEEE Transactions on Cybernetics. – 2015. – V.45(2). – P. 191–204.

de Groot, B. L. Prediction of protein conformational freedom from distance constraints /B.L. de Groot [et al.] // Proteins. – 1997. – V. 29(2).– P. 240–251.

Galzitskaya, O. V. α-Helix and β-Hairpin Folding from Experiment, Analytical Theory andMolecular Dynamics Simulations / O.V.Galzitskaya, J. Higo, A.V. Finkelstein // CurrentProtein and Peptide Science. – 2002. – V. 2(3). – P.191–200.

Hansen, N. Adapting arbitrary normal mutation distributions in evolution strategies: Thecovariance matrix adaptation / N. Hansen, A.Ostermeier // Proceedings of the 1996 IEEEInternational Conference on Evolutionary Computation. – 1996. – P. 312–317.

Heterogeneous Computing Cluster HybriLIT, 2015. – URL: http://hybrilit.jinr.ru/en/.

Kennedy, J. Particle swarm optimization / J.Kennedy, R. Eberhart // Proceedings of IEEEInternational Conference on Neural Networks. –1995. – V. 4. – P. 1942–1948.

Kirkpatrick, S. Optimization by Simulated Annealing / S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi// Science. – 1983. – V. 220(4598). – P. 671–680.

Levinthal, C. How to Fold Graciously / C. Levinthal // Mossbauer Spectroscopy in BiologicalSystems: Proceedings of a meeting held at Allerton House, University of Illinois Press. – 1969. – Jan. –P. 22–24.

O'Meara, M. J. Combined Covalent-Electrostatic Model of Hydrogen Bonding ImprovesStructure Prediction with Rosetta / M.J. O'Meara [etal.] // Journal of Chemical Theory andComputation. – 2015. – V. 11(2). – P. 609–622.

Shen, Y. Improved PEP-FOLD approach for peptide and miniprotein structure prediction / Y.Shen [et al.] // Journal of Chemical Theory and Computation. – 2014. – V. 10. – P. 4745–4758.

Silva-Santos, C. H. Designing NovelPhotonic Devices by Bio-Inspired Computing / C.H.Silva-Santos, M.S. Goncalves, H.E. Hernandez-Figueroa // IEEE Photonics Technology Letters. –2010. – V. 22(10). – P. 1177–1179.

Solis, F. J. Minimization by random searchtechniques / F.J. Solis, R.J-B. Wets // Mathematics ofOperation Research. – 1981. – V. 6(1). – P. 19–30.

Sumathi, K. 3dSS: 3D structuralsuperposition / K. Sumathi [et al.] // Nucleic AcidsResearch. – 2006. – V. 34. – P. 128–132.

Sung, S. S. Helix Folding Simulations withVarious Initial Conformations / S.S. Sung //Biophysical Journal. – 1994. – V. 66. – P. 1796–1803.

Sung, S. S. Monte Carlo Simulations of β-Hairpin Folding at Constant Temperature / S.S. Sung// Biophysical Journal. – 1999. – V. 76. – P. 164–175.

Thevenet, P. PEP-FOLD: an updated de novostructure prediction server for both linear anddisulfide bonded cyclic peptides / P. Thevenet [etal.] // Nucleic Acids Research. – 2012. – V. 40. – P.288–293.

Zhang, J. JADE: Adaptive differentialevolution with optional external archive / J. Zhang,A. Sanderson // IEEE Transactions on EvolutionaryComputation. – 2009. – V. 13(5). – P. 945–958.

Published

2021-08-30

How to Cite

Полуян, С. В., & Ершов, Н. М. (2021). Application of evolutionary optimization methods for peptide structure prediction. E-Journal of Dubna State University. A Series of “Science of Man and Society”, (2(34), 37–44. Retrieved from https://ein.uni-dubna.ru/index.php/ein/article/view/159

Issue

Section

Статьи