Перовскитные фотоэлектрические преобразователи без дырочнопроводящих буферных слоев
Ключевые слова:
органо-неорганические перовскиты, перовскитные фотоэлектрические преобразователи, перовскитные солнечные батареиАннотация
Проводится обзор исследований в области формирования фотоэлектрических преобразователей на основе органо-неорганических перовскитов без дырочнопроводящих буферных слоев с использованием углеродных материалов в качестве тыльного контакта.
Библиографические ссылки
Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells // J. Am. Chem. Soc. 2009. V. 131. P. 6050–6051.
Im J.-H., Lee C.-R., Lee J.-W., Park S.-W., Park N.-G. 6.5% efficient perovskite quantum-dotsensitized solar cell // Nanoscale. 2011. V. 3. P. 4088– 4093.
Ahn N., Son D.-Y., Jang I.-H., Kang S.M., Choi M., Park N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide // J. Am. Chem. Soc. 2015. V. 137. P. 8696–8699.
Jeon N.J., Noh J.H., Yang W.S., Kim Y.C., Ryu S., Seo J., Seok S.I. Compositional engineering of perovskite materials for high-performance solar cells // Nature. 2015. V. 517. P. 476–480.
Li X., Bi D., Yi C., D_ecoppet J.-D., Luo J., Zakeeruddin S.M., Hagfeldt A., Gratzel M. A vacuum flash-assisted solution process for high-efficiency largearea perovskite solar cells // Science. 2016. V. 353. P. 58–62.
McMeekin D.P., Sadoughi G., Rehman W., Eperon G.E., Saliba M., Horantner M.T., Haghighirad A., Sakai N., Korte L., Rech B., Johnston M.B., Herz L.M., Snaith H.J. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells // Science. 2016. V. 351. P. 151–155.
Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J., Leijtens T., Herz L.M., Petrozza A., Snaith H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber // Science. 2013. V. 342. P. 341–344.
Pazos-Outon L.M., Szumilo M., Lamboll R., Richter J.M., Crespo-Quesada M., Abdi-Jalebi M., Beeson H.J., Vrucinic M., Alsari M., Snaith H.J., Ehrler B., Friend R.H., Deschler F. Photon recycling in lead iodide perovskite solar cells // Science. 2016. V. 351. P. 1430–1433.
Blancon J.-C., Tsai H., Nie W., Stoumpos C., Pedesseau L., Katan C., Kepenekian M., Soe C., Appavoo K., Sfeir M. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites // Science. 2017. V. 355. P. 1288–1291.
Guo Z., Wan Y., Yang M., Snaider J., Zhu K., Huang L. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy // Science. 2017. V. 356. P. 59–62.
Xing G., Mathews N., Sun S., Lim S.S., Lam Y.M., Gratzel M., Mhaisalkar S., Sum T.C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 // Science. 2013. V. 342. P. 344–347.
Yang W.S., Park B.-W., Jung E.H., Jeon N.J., Kim Y.C., Lee D.U., Shin S.S., Seo J., Kim E.K., Noh J.H. Iodide management in formamidinium-leadhalideebased perovskite layers for efficient solar cells // Science. 2017. V. 356. P. 1376–1379.
Gratzel M. The light and shade of perovskite solar cells // Nat. Mater. 2014. V. 13. P. 838–842.
Burschka J., Pellet N., Moon S.-J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Gratzel M. Sequential deposition as a route to highperforperovskitesensitized solar cells // Nature. 2013. V. 499. P. 316–319.
Gratzel M. The rise of highly efficient and stable perovskite solar cells // Acc. Chem. Res. 2017. V. 50. P. 487–491.
Leijtens T., Eperon G.E., Pathak S., Abate A., Lee M.M., Snaith H.J. Overcoming ultraviolet light instability of sensitized TiO2 with mesosuperstructured organometal tri-halide perovskite solar cells // Nat. Commun. 2013. V. 4. P. 2885.
Berhe T.A., Su W.-N., Chen C.-H., Pan C.- J., Cheng J.-H., Chen H.-M., Tsai M.-C., Chen L.-Y., Dubale A.A., Hwang B.-J. Organometal halide perovskite solar cells: degradation and stability // Energy Environ. Sci. 2016. V. 9. P. 323–356.
Docampo P., Bein T. A long-term view on perovskite optoelectronics // Acc. Chem. Res. 2016. V. 49. P. 339–346.
Xu L., Xiong Y., Mei A., Hu Y., Rong Y., Zhou Y., Hu B., Han H. Efficient Perovskite Photovoltaic‐Thermoelectric Hybrid Device // Advanced Energy Materials. 2018. V. 8(13). P. 1702937.
Ku Z., Rong Y., Xu M., Liu T., Han H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode // Sci. Rep. 2013. V. 3.
Mei A., Li X., Liu L., Ku Z., Liu T., Rong Y., Xu M., Hu M., Chen J., Yang Y., Gratzel M., Han H. A hole-conductorefree, fully printable mesoscopic perovskite solar cell with high stability // Science. 2014. V. 345. P. 295–298.
Cai Y., Lusheng L., Peng G. Promise of commercialization: Carbon materials for low-cost perovskite solar cells // Chinese Physics. 2018. V. 27.1. P. 018805.
Wei Z., Chen H., Yan K., Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells // Angew. Chem. 2014. V. 126. P. 13455–13459.
Etgar L. Hole Conductor Free Perovskitebased Solar Cells // Springer. 2016.
Laban W.A., Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells // Energy Environ. Sci. 2013. V. 6. P. 3249–3253.
Shi J., Dong J., Lv S., Xu Y., Zhu L., Xiao J., Xu X., Wu H., Li D., Luo Y. Holeconductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property // Appl. Phys. Lett. 2014. V. 104. P. 063901.
Xiao Y., Han G., Chang Y., Zhang Y., Li Y., Li M. Investigation of perovskitesensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells // J. Power Sources. 2015. V. 286. P. 118–123.
Zhou H., Shi Y., Dong Q., Zhang H., Xing Y., Wang K., Du Y., Ma T. Holeconductor-free, metalelectrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode // J. Phys. Chem. Lett. 2014. V. 5. P. 3241–3246.
Domanski K., Correa-Baena J.-P., Mine N., Nazeeruddin M.K., Abate A., Saliba M., Tress W., Hagfeldt A., Gratzel M. Not all that glitters is gold:
metalmigration-induced degradation in perovskite solar cells // ACS Nano. 2016. V. 10. P. 6306–6314.
Guerrero A., You J., Aranda C., Kang Y.S., Garcia-Belmonte G., Zhou H., Bisquert J., Yang Y. Interfacial degradation of planar lead halide perovskite solar cells // ACS Nano. 2016. V. 10. P. 218–224.
Verdingovas V., Müller L., Jellesen M.S., Grumsen F.B., Ambat R. Effect of iodine on the corrosion of Au-Al wire bonds // Corros. Sci. 2015. V. 97. P. 161–171.
Gholipour S., Correa-Baena J.P., Domanski K., Matsui T., Steier L., Giordano F., Tajabadi F., Tress W., Saliba M., Abate A. Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth // Adv. Energy Mater. 2016. V. 6.
Chen H., Wei Z., Zheng X., Yang S. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells // Nano Energy. 2015. V. 15. P. 216–226.
Ito S., Mizuta G., Kanaya S., Kanda H., Nishina T., Nakashima S., Fujisawa H., Shimizu M., Haruyama Y., Nishino H. Light stability tests of CH3NH3PbI3 perovskite solar cells using porous carbon counter electrodes // Phys. Chem. Chem. Phys. 2016. V. 18. P. 27102–27108.
Wei H., Xiao J., Yang Y., Lv S., Shi J., Xu X., Dong J., Luo Y., Li D., Meng Q. Freestanding flexible carbon electrode for highly efficient holeconductor-free perovskite solar cells // Carbon. 2015.V. 93. P. 861–868.
Zhang F., Yang X., Wang H., Cheng M.,Zhao J., Sun L. Structure engineering of holeconductor free perovskite-based solar cells with lowtemperature processed commercial carbon paste as cathode // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 16140–16146.
Hu R., Chu L., Zhang J., Li X., Huang W.Carbon materials for enhancing charge transport in the advancements of perovskite solar cells // J. Power Sources. 2017. V. 361. P. 259–275.
Yang Y., Pham N. D., Yao D., Zhu H., Yarlagadda P., Wang H. Inorganic p-type semiconductors and carbon materials based hole transport materials for perovskite solar cells // Chinese Chemical Letters. 2018. 39. Hu Y., Si S., Mei A., Rong Y., Liu H., Li X., Han H. Stable large-area (10x10 cm2 ) printable mesoscopic perovskite module exceeding 10% efficiency // Sol. RRL. 2017. V. 1.
Jiang X., Yu Z., Lai J., Zhang Y., Hu M., Lei N., Wang D., Yang X., Sun L. Interfacial engineering of perovskite solar cells by employing a hydrophobic copper phthalocyanine derivative as holetransporting material with improved performance and stability // ChemSusChem. 2017. V. 10. P. 1838–1845.
Priyadarshi A., Haur L.J., Murray P., Fu D., Kulkarni S., Xing G., Sum T.C., Mathews N.,Mhaisalkar S.G. A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability // Energy Environ. Sci. 2016. V. 9. P. 3687–3692.
Rong Y., Hou X., Hu Y., Mei A., Liu L., Wang P., Han H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells // Nat. Commun. 2017. V. 8.
Sheng Y., Hu Y., Mei A., Jiang P., Hou X., Duan M., Hong L., Guan Y., Rong Y., Xiong Y. Enhanced electronic properties in CH3NH3PbI3 via LiCl mixing for hole-conductor-free printable perovskite solar cells // J. Mater. Chem. A. 2014. V. 4. P. 16731–16736.
Chen J., Xiong Y., Rong Y., Mei A., Sheng Y., Jiang P., Hu Y., Li X., Han H. Solvent effect on the hole-conductor-free fully printable perovskite solar cells // Nano Energy. 2016. V. 27. P. 130–137.
Chen H., Wei Z., He H., Zheng X., Wong K.S., Yang S. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14% // Adv. Energy Mater. 2016. V. 6. P. 216– 226.
Bai S., Cheng N., Yu Z., Liu P., Wang C., Zhao X.-Z. Cubic: column composite structure (NH2CH=NH2)x(CH3NH3)1-xPbI3 for efficient holetransport material-free and insulation layer free perovskite solar cells with high stability // Electrochim. Acta. 2016. V. 190. P. 775–779.
Liang J., Wang C., Wang Y., Xu Z., Lu Z., Ma Y., Zhu H., Hu Y., Xiao C., Yi X. All inorganic perovskite solar cells // J. Am. Chem. Soc. 2016. V. 138. P. 15829–15832.
Li Z., Kulkarni S.A., Boix P.P., Shi E., Cao A., Fu K., Batabyal S.K., Zhang J., Xiong Q., Wong L.H. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells // ACS Nano. 2014. V. 8. P. 6797–6804.
Wei Z., Chen H., Yan K., Zheng X., Yang S. Hysteresis-free multi-walled carbon nanotube-basedperovskite solar cells with a high fill factor // J. Mater. Chem. A. 2015. V. 3. P. 24226–24231.
Wang B., Liu T., Zhou Y., Chen X., Yuan X., Yang Y., Liu W., Wang J., Han H., Tang Y. Holeconductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays // Phys. Chem. Chem. Phys. 2016. V. 18. P. 27078–27082.
Cheng N., Liu P., Bai S., Yu Z., Liu W., Guo S.-S., Zhao X.-Z. Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells // J. Power Sources. 2016. V. 321. P. 71–75.
Zheng X., Chen H., Li Q., Yang Y., Wei Z., Bai Y., Qiu Y., Zhou D., Wong K.S., Yang S. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells // Nano Lett. 2017. V. 17. P. 2496–2505.