32 ISSN 1818-0744

УДК 621.389

Ю. В. Клемешов, Н. В. Горбунов

Система управления пъезостакером для лазерного инклинометра

Рассматривается система автономного управления пъезостакером на основе одноплатного компьютера Rasberry Pi 3B. Данная система позволит управлять пъезостакером, использующимся при стабилизации лазерного луча в лазерном инклинометре.

Ключевые слова: лазерный инклинометр, пъезостакер, Raspberry Pi, Python, фильтрация, шумы

Об авторах

Клемешов Юлий Викторович — студент 2-го курса магистратуры кафедры проектирования электроники для установок «мегасайенс» государственного университета «Дубна». *E-mail:* klemeshov_1000@mail.ru. 141980 Московская область, г. Дубна, ул.Университетская, д. 19.

Горбунов Николай Васильевич – ведущий научный сотрудник ЛФВЭ ОИЯИ, кандидат технических наук, доцент кафедры проектирования электроники для установок «мегасайенс» государственного университета «Дубна».

В начале 2014 года ученые Ю. Будагов и М. Ляблин из Лаборатории ядерных проблем (ЛЯП) ОИЯИ в Дубне получили российский патент на прецизионный лазерный инклинометр (ПЛИ) – устройство для измерения угла наклона Земли. ПЛИ (рис. 1) измеряет угловые колебания земной поверхности с точностью до 10^{-9} рад. Прибор может применяться в метрологии, геодезии, сейсмографии, космической отрасли и др.

Для стабилизации инклинометра используется система из пяти пъезостакеров *Polaris*-P20 – пъезоэлектрических приводов. Два из пяти противоположных пъезопривода закреплены неподвижно и соединяют две платформы (верхнюю и нижнюю), на которых находится прибор. На третий подается напряжение в диапазоне от 0 до 15 В, в результате чего регулируется наклон платформы стабилизации инклинометра. Минимальный угол наклона составляет 10-9 рад.



Рис. 1. Вид ПЛИ

Постановка задачи

Инклинометр выполнен в виде стационарного вычислительного объекта с управлением в среде *LabView*.

Для расширения сферы использования прибора необходимо обеспечить возможность автономной работы.

Один из этапов модернизации ПЛИ заключается в обеспечении автономной регулировки положения измерительной платформы с помощью пьезостакеров.

© Клемешов Ю. В., Горбунов Н. В., 2019

Автономный мониторинг ПЛИ на Raspberry Pi 3B

Из-за невозможности регулировки положения платформы вручную разработано 2 варианта управления: стационарный (проводной) и автономный (по сети Wi-Fi). Второй способ представляется более актуальным. Для обеспечения требуемой точности позиционирования 0,017 мкм на длине 260 мкм необходим 14 битный ЦАП, который обеспечивает выходное напряжение в пределах 15 В. С помощью ЦАП можно подавать напряжение с малым шагом на пъезостакер, что позволит менять угол наклона платформы стабилизации. В качестве регулирующего ЦАП исполь-

зовался цифроаналоговый преобразователь *AD5535B* фирмы *Analog Devices* [1].

AD5535B-32-канальный ЦАП с разрешением 14 бит, обеспечивает выходное напряжение канала в диапазоне $0...200~\mathrm{B}$ при токе $550~\mathrm{mkA}$.

Для управления AD5535B использовался микрокомпьютер $Raspberry Pi \ 3B$.

Была разработана мезонинная конструкция из двух плат для подключения *AD5535B* к *Raspberry Pi 3B*. На рис. 2 и 3 показано, как мезонинная плата с ЦАП устанавливается в основную плату, а та в свою очередь соединяется с *Rasbperry Pi 3B*.

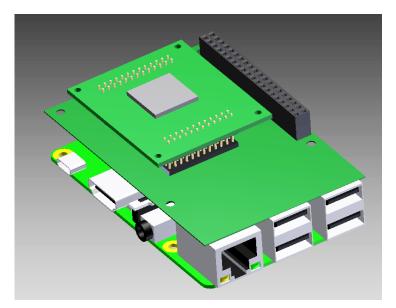


Рис. 2. 3D модель мезонинной конструкции платы ЦАП и Raspberry Pi 3B

Рис. 3. Фотография конструкция платы ЦАП и Raspberry Pi 3B

Для разработки и тестирования алгоритма управления ЦАП на Raspberry Pi 3B

использовалась операционная система реального времени *Raspbian*. Управляющая про-

34 ISSN 1818-0744

грамма написана на языке Python в среде Python 3.5 IDLE [3].

Для обеспечения взаимодействия пользователя с программой разработано графическое приложение, в котором пользователь задает нужное напряжение на определенном канале. Графический интерфейс реализован с использованием модуля Qt [5]. Скриншот графического приложения показан на рис. 4.

Анализ и фильтрация шумов питания

Напряжение, подаваемое на пьезостакер, находится в диапазоне 0...15 В (с шагом 1 мВ). Для управления пъезостакером минимальный размах амплитуды шума должен составлять не более 1 мВ.

Для анализа шумов собран стенд, блоксхема которого приведена на рис. 5.

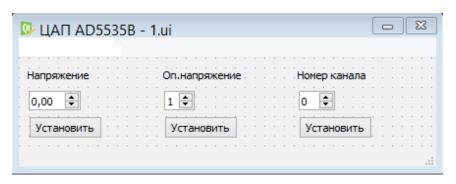


Рис. 4. Внешний вид графического приложения

Рис. 5. Блок-схема стенда для измерения выходных шумов устройства

Рис. 6. Устройство внутри корпуса

Для анализа спектра шумов использовался цифровой осциллограф *Tektronix* MDO3024 [6]. В нем есть функция БПФ для анализа спектра сигнала. При настройке БПФ выбрано окно Хеннинга, т.к. в этом случае достигается хорошее разрешение по частоте, просачивание спектральных частот при этом низкое, а точность измерения амплитуды соответствует требованиям. При этом для амплитуды выбрана линейная среднеквадратичная шкала. Ширина окна выбрана в пределах 12,5 кГц. Для более точного распознавания частот с большой амплитудой применялись функции панорамирования и масштабирования.

Перед измерением шумов были проанализированы основные данные по шумам источника питания, а также характеристики ЦАП (интегральная и дифференциальная нелинейность, смещение нуля, температурные шумы и т.д.). Нестабильность напряжения источника питания составляет $\leq 0.01\% + 3$ мВ (при токе ≤ 3 A) на регулируемых каналах, а на нерегулируемом канале ≤ 10 мВ под нагрузкой. При анализе характеристик ЦАП AD5535B выделены следующие особенности:

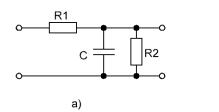
- смещение напряжения при температурной нестабильности $\pm 500 \text{ мB/°C}$;
- наличие низкочастотного шума (0,1...10 Гц) с размахом амплитуды 1 мВ;
- линейный участок выходной характеристики усилителя напряжения ЦАП начинается с 7 В;
- \bullet интегральная нелинейность составляет от -2 мВ...6 мВ на участке выходного напряжения 0...15 В;

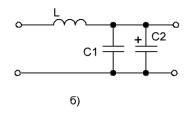
- дифференциальная нелинейность составляет менее 1 мВ на всем диапазоне выходного напряжения ЦАП;
- присутствует смещение нуля выходного напряжения (когда все биты в регистре ЦАП равны нулю, но на выходе имеется некоторое напряжение: у данной микросхемы оно составляет от 0,5 до 1 В).

Анализ и измерения шумов проведены для источников *REF*, *AVCC* и *VPP*. Анализировались среднеквадратичное значение шума (*RMS*) и размах амплитуды шума (*Peak-to-Peak*). С помощью БПФ анализировались частоты, которые давали вклад в спектр шума более 1 мВ. В основном это были частота сетевого напряжения (50 Гц) и кратные ей частоты.

Отдельно производилось измерение шумов на 20-м канале ЦАП (VOUT20). На нем было установлено значение напряжения 4 В при REF = 1 В, AVCC = 5 В, VPP = 15 В. Параметры шума на выходном канале № 20: RMS = 5,89 мВ; P-P = 41,6 мВ.

Для уменьшения шумов к AVCC подключен аккумулятор PowerBank 10000мA/ч с выходным напряжением 5 B/3 A. При этом параметры шума на VOUT20 стали следующими: RMS = 1.5 мB; P-P = 15.6 мВ.


При измерении шумов *PowerBank*, который дает напряжение для *Raspberry Pi 3B*, определены следующие характеристики: RMS = 17 мB, P-P = 136 мB. У такого источника питания шумы должны быть минимальными, но в *PowerBank* используется схема повышающего преобразователя напряжения, что естественно вносит дополнительные шумы.


36 ISSN 1818-0744

Поэтому в будущем планируется использовать обычные батареи.

Для исключения шумов от источника питания $Raspberry\ Pi$ питание $AVCC\$ ЦАП осуществлялось от отдельного источника.

Для уменьшения шумов на VOUT20 выполнялась дополнительная фильтрация с использованием нескольких типов пассивных фильтров. Были протестированы RC-фильтр (рис. 7a) и Γ -образные LC-фильтры (рис. 76, ϵ).

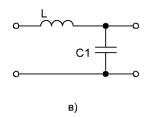


Рис. 7. Фильтры для уменьшения выходных шумов

Выбран Г-образный LC-фильтр с дополнительным конденсатором с параметрами $L=2,2\,$ мГн, $C_1=100\,$ нФ и $C_2=220\,$ мкФ. При этом получены следующие параметры шума на выходе ЦАП: $RMS=320\,$ мкВ, а $P\text{-}P=1,92\,$ мВ.

Результаты

- 1. Разработан первоначальный вариант системы управления пъезостакером на основе *Raspberry Pi 3B*.
 - 2. Разработано программное обеспечение.
- 3. Полученные параметры выходного сигнала и шума системы позволяют перейти к практическим испытаниям системы с пъезостакерами.

Библиографический список

1. Техническая документация на ЦАП AD5535B – URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD5535B.pdf

(дата обращения: 02.07.2019. Режим доступа: свободный).

- 2. Печатные платы РЕЗОНИТ Производство и монтаж печатных плат. URL: https://www.rezonit.ru/urgent/ml/ (дата обращения: 08.07.2019. Режим доступа: свободный).
- 3. Raspberry Pi Teach, Learn, and Make with Raspberry Pi. URL: https://www.raspberrypi.org/documentation/usage/pyt hon/README.md (дата обращения: 15.07.2019. Режим доступа: свободный).
- 4. Python For Engineers. URL: http://pythonforengineers.com/your-first-gui-app-with-python-and-pyqt/ (дата обращения: 15.08.2019. Режим доступа: свободный).
- 5. PyQt5 for Linguists Home. URL: http://pyqtforlinguists.appspot.com/ebook/_2_pyqt5.ht ml (дата обращения: 15.08.2019. Режим доступа: свободный).
- 6. Контрольно-измерительное оборудование Tektronix. URL: https://ru.tek.com/manual/seriya-mdo3000-rukovodstvo-po-ekspluatacii (дата обращения: 19.09.2019. Режим доступа: свободный).

Поступила в редакцию 23.12.2019