58 ISSN 1818-0744

УДК 620.3

И. Н. Фадейкина, Ю. С. Медовникова

Изучение процессов диффузии протонов в пленках оксида вольфрама (VI) методом циклической вольтамперометрии

Проведено исследование влияния концентрации электролита и скорости развертки на величину коэффициента диффузии протонов в пленке оксида вольфрама (VI) в водной среде методом циклической вольтамперометрии.

Ключевые слова: полупроводниковые материалы, тонкие пленки, FTO-стекло, WO₃, ЦВА

Об авторах

Фадейкина Ирина Николаевна — кандидат технических наук, преподаватель кафедры химии, новых технологий и материалов Государственного университета «Дубна».

Медовникова Юлия Сергеевна — студент кафедры химии, новых технологий и материалов Государственного университета «Дубна».

Метод циклической вольтамперометрии (ЦВА) применяют в различных областях науки и техники в качестве эффективного метода исследования и анализа. Наиболее важным преимуществом метода ЦВА является удобство определения коэффициентов диффузии, скоростей электрохимических стадий, параметров адсорбции и скоростей химических реакций, входящих в электронный процесс.

В основе данного метода исследования и анализа лежит изучение и использование процессов, протекающих на поверхности электрода или в межэлектродном пространстве. Аналитический сигнал возникает в результате электрохимической реакции, т.е. гетерогенной реакции переноса электронов или ионов через границу раздела электропроводящих фаз. Одной из фаз является электрод, другой раствор электролита [3].

Объектом исследования с помощью метода ЦВА являются электрохромные устройства (ЭХУ), способные изменять свои оптические свойства с помощью электрических сигналов. ЭХУ имеют большие воз-

можности в регулировании света в видимой области спектра и могут быть использованы в качестве смарт-окон, автомобильных зеркал заднего вида, а также для энергосбережения в зданиях и для оптической коммутации.

Электрохромные устройства, основанные на тонких пленках, меняют свои оптические свойства в зависимости от количества введенного в них заряда. ЭХУ представляет собой электрохимическую ячейку, включающую катод, анод и электролит. В качестве анода используется электрохромный материал, нанесенный на прозрачный проводящий электрод, противоэлектродом является также прозрачный проводник [1].

Исследование диффузии протонов в пленках WO₃

Преимущественно исследование пленок WO_3 проводится в растворе серной кислоты, при диапазоне потенциалов в среднем от -800 до 1000 мВ, т.к. в данном диапазоне не происходит побочных реакций разложения воды (рис. 1) [4].

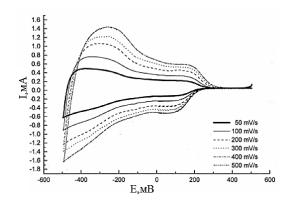


Рис. 1. Циклическая вольтамперограмма вольфраматной пленки в 0.5~M растворе H_2SO_4 , подложка ITO-стекло; скорость развертки варьировалась от 50~до~500~мB/c [7]

Схематично процесс перезаряжения покрытия можно представить так [4]:

$$W^{VI}O_3 \cdot 2H_2O + xe^- + xH^+ \\ \leftrightarrow H_xW^{VI,V}O_3 \cdot 2H_2O.$$

В случае получения симметричных ЦВА, мы можем говорить о высокой обратимости процессов перезаряжения. Если скорость перезарядки в пределах 0,5—1,0 В/с, то в предположении, что диффузия является планарной, коэффициент диффузии будет порядка 10^{-4} см²/с при толщине пленки 140 нм [4].

Обычно коэффициент диффузии D_i рассчитывают из формулы максимального тока окисления: $D_i^{1/2} = \frac{i_p}{1,72\cdot 10^5 \cdot n^{3/2} \cdot A \cdot C_0 \cdot \nu^{1/2}}$, где A представляет собой геометрическую площадь поверхности электрода, n — число электронов, переносимых в единицу реакции, и C_0 представляет собой концентрацию диффундирующих частиц (H^+) [7].

В зависимости от условий синтеза и осаждения исследуемых пленок и их кристаллической структуры, используемых электролитов, концентрации протонов и проводимости подложки коэффициент диффузии может варьироваться от порядка 10^{-4} до 10^{-13} см²/с [4; 6; 7; 8].

Исследование диффузии протонов оксида вольфрама (WO_3) проводилось на потенциостате «P-30», использовалась трехэлектродная схема подключения.

Условия проведения эксперимента:

- 1. Используемые электроды:
- электрод сравнения хлоридсеребряный электрод;

- вспомогательный электрод стальная сетка;
- рабочий электрод пленка оксида вольфрама (WO_3) нанесенная на FTO-стекло с использованием золь-гель технологии и оттоженная при разных температурах.

В данной работе были исследованы три образца пленок оксида вольфрама (WO_3), нанесенных на проводящую подложку (FTO-стекло — проводящий слой оксида олова, допированного фтором (SnO_2 :F)), полученных при разных условиях и имеющих разную кристаллическую структуру.

Таблица 1. Условия получения исследуемых образцов пленок оксида вольфрама (VI)

Номер образца	Состав раствора осаждения	Температура прокаливания, С°
1	5% тетраэтиленгли- коля (ТЭГ)	300
2	10% ТЭГ	300
3	1% H ₂ O ₂	250

- 2. Исследование диффузии протонов проводили в растворе H_2SO_4 с концентрацией 1 M, 0,5 M и 0,1 M соответственно.
- 3. Скорость развертки варьировалась от 10 до 100 мВ.
- 4. Диапазон потенциалов выставлялся от -200 до 1000 мВ с учетом «острова стабильности» воды.

Результаты

1. Проверка линейной зависимости плотности тока j_p в пике ЦВА от квадратного корня из скорости развертки потенциала v. В таблице представлены данные для концентрации электролита 0,5 M с учетом того, что зависимость при концентрациях серной кислоты 0,1 M и 1 M имела подобный вид.

Для изучения диффузии протонов в пленке оксида вольфрама и расчета коэффициента диффузии D_i было необходимо убедиться в обратимости электрохимической реакции протекающей в ячейке. Так, в работе [2] было предложено охарактеризовать обратимость электрохимической реакции проверкой линейности зависимости плотности тока j_p от квадратного корня из скорости развертки потенциала v (рис. 2).

60 ISSN 1818-0744

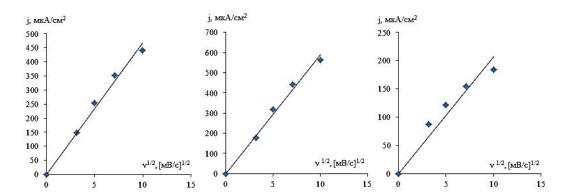


Рис. 2. Проверка линейной зависимости плотности тока j_p в пике ЦВА от квадратного корня из скорости развертки потенциала v; концентрация H_2SO_4 0,5M

Сравнивая экспериментальные графики зависимости $j_p - \sqrt{v}$ с литературными данными [2], (рис. 3), можно считать, что полученная зависимость линейная, и процесс, происходящий в пленке, обратим.

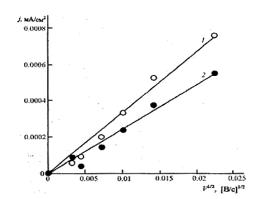


Рис. 3. Зависимость плотности анодного (1) и катодного (2) токов в пике ЦВА от скорости развертки потенциала [2]

2. Циклические вольтамперограммы, полученные при одинаковой скорости развертки и разных концентрациях серной кислоты, показаны на рис. 4a-e.

Как видно из полученных ЦВА (рис. 4a, 6, 6), ток пика заметно уменьшается при уменьшении концентрации электролита, данное явление напрямую связано с коэффициентом диффузии протонов при окислительно-восстановительных процессах вольфраматной пленке. Концентрация электролита влияет на коэффициент диффузии, причем, при увеличении концентрации в 5— 10 раз, коэффициент диффузии уменьшается на 1—2 порядка (рис. 5). Это означает, что при более низкой концентрации электролита поток протонов от рабочей поверхности исследуемой пленки WO₃ будет выше, что приводит к необходимой качественности электрохимических процессов в образце.

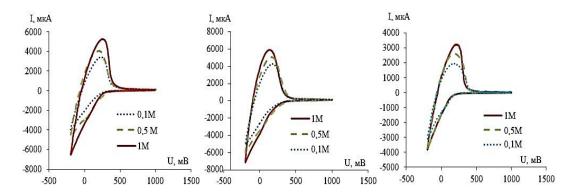


Рис. 4*a*. ЦВА WO₃ (300 °C 5% ТЭГ); скорость развертки 25 мВ/с

Рис. 4 δ . ЦВА WO₃ (300 °C 10% ТЭГ); скорость развертки 25 мВ/с

Рис. 4*в*. ЦВА WO₃ (250 °C 1% $\rm H_2O_2$); скорость развертки 25 $\rm MB/c$

Таблица 2. Рассчитанный коэффициент диффузии для образцов 1—3 при концентрации электролита 0,1 M; 0,5 M и 1 M

z,	Концентрация H ₂ SO ₄ , M		
разп	0,1	0,5	1
№ образца	<i>Di</i> ·10 ⁻⁹ см ² /с	D_i ·10 ⁻¹⁰ cm ² /c	D_i ·10 ⁻¹¹ cm ² /c
1	2,52	1,28	4,00
2	3,25	1,99	6,48
3	1,83	3,02	1,15

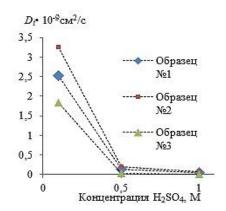


Рис. 5. График зависимости коэффициента диффузии от концентрации электролита

Рассчитанный коэффициент диффузии составляет $10^{-9}...10^{-11}$ см²/с, что сопоставимо с диффузией протонов в пленке WO₃ из литературных данных [5].

Различие значений D_i разных образцов при одной концентрации серной кислоты указывает на различную кристаллическую структуру вольфраматных пленок, что подтверждается в работах [9; 5].

3. ЦВА для образцов 1, 2, 3 полученные при скоростях развертки 10, 25, 50 и 100 мВ/с и одинаковых концентрациях серной кислоты (рис. 2, 5, 6).

Из рис. 6, 7 и 8 видно пропорциональное увеличение тока максимума от скорости развертки, что согласуется с литературными данными [2; 4; 6; 7; 8]. Смещение положений пиков на шкале потенциалов при изменении скорости *v*, возможно, свидетельствует о частичной необратимости электродного процесса при данных скоростях развертки [2].

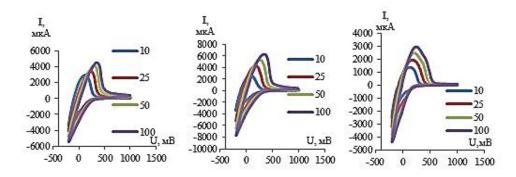


Рис. 6. ЦВА для образцов 1, 2, 3, полученные при скоростях развертки 10, 25, 50 и 100 мВ/с, концентрация $H_2SO_4\ 0.1M$

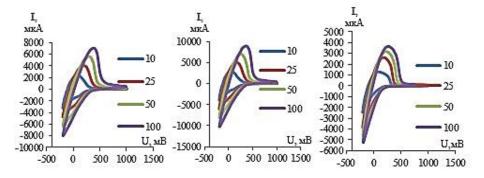


Рис. 7. ЦВА для образцов 1, 2, 3, полученные при скоростях развертки 10, 25, 50 и 100 мВ/с, концентрация H_2SO_4 0,5М

62 ISSN 1818-0744

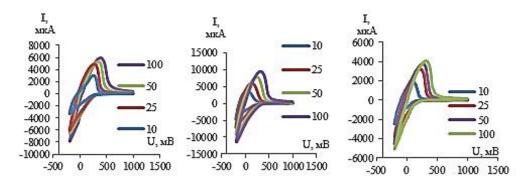


Рис. 8. ЦВА для образцов 1, 2, 3, полученные при скоростях развертки 10, 25, 50 и 100 мВ/с, концентрация $\rm H_2SO_4$ 1 М

Обсуждение результатов. Выводы

Традиционное применение пленок оксида вольфрама WO₃, развитое в последней четверти прошлого столетия, основано на электрохромном и фотохромном эффектах в видимом диапазоне длин волн. В последние годы к этому материалу возник новый интерес. Во-первых, он связан с высокой чувствительностью пленок к воздействию различных газов (C_6H_6 , NO_x , H_2S , CO, NH_3 , H_2 , О2, О3), что позволяет создавать газовые сенсоры для контроля загрязнения окружающей среды, для медицинской диагностики и др. Во-вторых, было обнаружено, что фотохромизм пленок WO₃ проявляется в более широком, чем оптический, диапазоне длин волн (от УФ- до длинноволнового ИКдиапазона). Последнее время для получения и дальнейшего изучения свойств электрохромных пленок, в частности пленок оксида вольфрама (WO₃), используют метод ЦВА, т.к. он не требует дополнительных реагентов, позволяет контролировать процесс электросинтеза путем варьирования параметров электролиза. Электрохимически осажденные пленки обладают высокой стабильностью, плотно сцеплены с электродной поверхностью, обладают высокой способностью к процессу переноса заряда [1]. И, наконец, данный метод позволяет оценить параметры обратимости электрохромных процессов в пленках как основное условие, подтверждающее их качество.

Таким образом, в рамках данной работы были изучены основные теоретические принципы метода ЦВА и собрана электрохимическая ячейка для изучения коэффициента диффузии вольфраматной пленки. А также был проделан ряд экспериментов по

поучению ЦВА, что позволяет сделать нам следующие выводы:

- зависимость плотности тока j_p в пике ЦВА от квадратного корня из скорости развертки потенциала ν линейная, что указывает на обратимость электрохимического процесса;
- коэффициент диффузии получился порядка $10^{-9}...10^{-13}$ см²/с, что сопоставимо с диффузией протонов в пленке WO₃ из литературных данных;
- различие значений D_i разных образцов при одной концентрации серной кислоты указывает на различную кристаллическую структуру вольфраматных пленок;
- на вид циклических вольтамперограмм, а следовательно, на коэффициент диффузии влияют такие факторы, как концентрация электролита (т.к. кислота выступает в роли источника протонов) и скорость развертки. Эксперимент показал, что при меньших скоростях система стремится к идеальной.

Библиографический список

- 1. Белоусов, А. Л. Электрохромные оксидные материалы / А.Л. Белоусов, Т.Н. Патрушева // Journal of Siberian Federal University. Engineering & Technologies. 2014. Т. 2, №7. С. 154–166.
- 2. Придатко, К. И. Определение скорости диффузии лития импульсным потенциостатическим методом / К.И. Придатко, А.В. Чуриков, М.А. Волгин // Электрохимическая энергетика. 2003. Т. 3, № 4. С. 184–191.
- 3. Прохорова, Γ . В. Введение в электрохимические методы анализа / Γ .В. Прохорова. Москва : Γ рант, 2007. 146 с.

Вестник Международного университета природы, общества и человека "Дубна". 2016. № 2(34) 63

- 4. Хохлов, А. А. Формирование электроактивных допированных и композиционных материалов на основе гидратированного оксида вольфрама : автореф. дис. ... канд. хим. наук / А.А. Хохлов. -2013.-23 с.
- 5. Хуболов, Б. М. Электрохромные пленки оксидных калий–вольфрамовых бронз / Б.М. Хуболов, Ж.Х. Хоконова // Фазовые переходы, упорядоченные состояния и новые материалы. 2010. Т. 6. С. 1–4.
- 6. Lee, Se–Hee. Crystalline WO₃ Nanoparticles for Highly Improved Electrochromic Applications / Se–Hee Lee, Phil A. // Advanced Materials. 2006. V. 18. P. 763–766.
- 7. Shiyanovskaya, I. Electrochromism in electrodeposited nanocrystalline WO₃ films / I. Shiyanovskaya // Journal of New Materials for Electrochemical Systems. 2000. V. 3. P. 241–247.
- 8. Punitha, K. Enhaced Colouration Efficiency of Pulsed DC Magnetron Sputtered WO₃ Films Cycled in H_2SO_4 Electrolyte Solution / K. Punitha // Hindawi Publishing Corporation Smart Materials Research Volume. -2014.-V.2.-P.9.
- 9. Abuzairi, T. Synthesis of Tungsten Oxide Thin Film and Nanowires for Highly Improved Electrochromic Smart Windows / T. Abuzairi // Fakultas Teknik Program Studi Teknik Eltctro; Tesis. 2012. V. 93. P. 9–10.

Поступила в редакцию 15.08.2016