УДК: 539.16.17

М. С. Тезекбаева, А. В. Еремин

Изучение характеристик модернизированной детектирующей системы GABRIELA сепаратора SHELS

Работа посвящена актуальной проблеме современного эксперимента – регистрации α -частиц и гамма-квантов, испускаемых продуктами реакций полного слияния тяжелых ускоренных ионов с ядрами мишеней. Рассматривается использование кремниевых и германиевых полупроводниковых детекторов в экспериментах на кинематическом сепараторе SHELS. В 2015 г. детектирующая система GABRIELA была модернизирована. Одной из главных задач являлось создание новой высокочувствительной детектирующей системы в фокальной плоскости сепаратора, позволяющей регистрировать ядра отдачи и альфа-, бета-, гамма-распады как материнских, так и дочерних ядер; также планируется проведение экспериментов по синтезу новых изотопов тяжелых ядер с атомными номерами $Z \ge 82$, в том числе трансфермиевых элементов, исследованию свойств их радиоактивного распада и поперечных сечений образования с целью изучения новых закономерностей структуры ядер тяжелых ядер.

Ключевые слова: GABRIELA, cenapamop SHELS, реакция полного слияния, альфа-распад, Si-,Geдетекторы, энергетическое разрешение.

Об авторах

Еремин Александр Владимирович — кандидат физико-математических наук, доцент кафедры «Ядерная физика» Государственного университета «Дубна».

Тезекбаева Мерейгуль Сайлаубаевна — студент-магистр кафедры «Ядерная физика» Государственного университета «Дубна».

Комбинированная установка *GABRIELA* располагающаяся в фокальной плоскости сепаратора, включает в себя детектирующую камеру, фокальный двухсторонний детектор, один германиевый *Clover* детектор и 4 германиевых однокристальных детектора. Детектирующая сборка из полупроводниковых Si-детекторов («колодец») представляет собой фокальный двухсторонний 100×100 мм² стриповый детектор, по периметру которого расположены четыре боковых 128-стриповых детектора. Кремниевые детекторы обеспечивают регистрацию альфа-, бетачастиц и осколков деления в геометрии, близкой 4π .

В работе рассматривается устройство полупроводниковых детекторов и проводится их энергетическая калибровка. Основной задачей настоящей работы является анализ экспериментальных данных, полученных в ноябре 2015 г. и январе 2016 г. в экспериментах по изучению характеристик модернизированной детектирующей системы GABRIELA при помощи тестовых реакций ⁴⁸Ca + 207 Pb $\rightarrow ^{255}$ No*, ⁴⁸Ca + 207 Bi $\rightarrow ^{255}$ Lr*. Ведется поиск последовательных α-α, α-γ корреляций и ядро отдачи — а корреляций для детального изучения свойств радиоактивного распада изотопа ²⁵⁵Lr и его дочерних изотопов.

Для калибровки многострипового кремниевого детектора установки GABRIELA была использована тестовая реакция 48 Ca + 207 Pb $\rightarrow {}^{255}$ No* и определено энергетическое разрешение (рис. 2).

[©] Тезекбаева М. С., Еремин А. В., 2016

Рис. 1. Фотография слева: держатель с новыми фокальным и боковыми детекторами, расположенный на заднем фланце новой детекторной камеры. Фотография справа: новая детекторная камера. Германиевые гамма-детекторы окружают *DSSD* 100x100 мм², с задней стороны камеры располагается *Clover* германиевый детектор

Рис. 2. Слева: идентификация пиков с определением энергетического разрешения для реакции ${}^{48}\text{Ca} + {}^{207}\text{Pb} \rightarrow {}^{255}\text{No*}$. Справа: идентификация пиков с определением энергетического разрешения для реакции ${}^{48}\text{Ca} + {}^{207}\text{Bi} \rightarrow {}^{255}\text{Lr}^*$

В ходе проведения эксперимента были изучены реакции полного слияния 48 Ca + 208 Pb $\rightarrow {}^{256}$ No* и 48 Ca + 209 Bi $\rightarrow {}^{257}$ Lr*. Функции возбуждения для этих реакций были детально измерены в работах [4; 5]. Энергия пучка 48 Ca выбиралась близкой к максимуму функции возбуждения 2n канала. Следующим этапом в обработке данных являлось изучение характеристик радиоактивного распада изотопов 102 и 103 элементов (254 No и 255 Lr), которые образовывались в упомянутых выше реакциях.

Для реакции с ²⁰⁹Ві проводился поиск корреляций типа ядро отдачи — альфа и мгновенные альфа — гамма.

Для распада ²⁵⁵Lr велся поиск временного распределения коррелированных событий ядро отдачи — альфа. Параметры поиска показаны на рис. 3. Энергетический диапазон для альфа-частиц составил 8200— 8600 кэв и был разделен на 2 диапазона для получения наиболее точных результатов корреляций. Диапазон значений для ядер отдачи был установлен 500—4000 каналов. Основываясь на табличных данных, временные условия для корреляций были выбраны от 0,1—5 периодов полураспада ²⁵⁵Lr.

Для альфа-частиц в энергетическом диапазоне 8200—8400 кэв было получено время жизни $\tau = 45,32$ сек и период полураспада $T_{1/2} = \tau \ln 2 = 31,4$ сек. Для альфа-части ²⁵⁵Lr в энергетическом диапазоне 8400—8600 кэв получен период полураспада $T_{1/2} = 2,61$ сек.

Вестник Международного университета природы, общества и человека "Дубна". 2016. № 2(34) 47

Распаду изотопа ²⁵⁵Lr соответствуют два периода полураспада с определенными энергиями. Это говорит о том, что в одном

случае распад происходит из основного состояния, а в другом случае — из изомерного.

Рис. 3. Параметры поиска корреляций ядро отдачи – альфа для изотопа ²⁵⁵Lr

Рис. 4. Слева: временное распределение коррелированных событий ядро отдача — альфа, для альфа-частиц с энергией 8200—8400 кэв. Справа: коррелированная альфа-линия ²⁵⁵Lr с энергией 8400—8600 кэв

Рис. 5. Слева: временное распределение коррелированных событий ядро отдача — альфа, для альфачастиц с энергией 8400—8600 кэв. Справа: коррелированные альфа-линии ²⁵⁵Lr

В процессе обработки экспериментальных данных также проводился поиска и анализ мгновенных альфа-частиц с гаммаквантами. Для альфа-частиц, которые могут быть отнесены к распаду ²⁵⁵Lr, проходил поиск гамма-квантов. Параметры поиска корреляций приведены на рис. 6.

Диапазон значений для альфа-частиц в этом случае брался общий от 8200 до 8700 кэв. Подключена опция «Поиск гамма» с указанием диапазона и временем корреляций. Время корреляций подбиралось с учетом возможной разницы времен между разными крейтами КАМАК. Мгновенные события могут регистрироваться в разных крейтах, гамма-кванты в одном крейте, а альфачастицы — в другом. Тогда разница регистрации между временами может составлять до 5 мксек. Для большей надежности был взят двух кратный запас — 10 мксек. Условия для ядер — отдачи остались теми же, что и при поиске корреляций ядро отдачи — альфа. На рис. 7 справа показаны коррелированные альфа-линии, а слева — гамма-линии тех гамма-квантов, которые коррелировали с альфа-частицами.

Параметры поиска корреляций.	Параметры поиска корреляций.
у First Find Recoil Начать поиск с ● Alpha Alpha or 8200 до 8700 КэВ ▼ Чсловия поиска Число альФа частиц	First Find Recoil Разброс позиций Диапозон значений Recoil ± 0 стрип от 500 до 4000 канала • Время корреляции
 ✓ Поиск Recoil От 0 € до 0 € Поиск Fission ✓ Только целые цепочки Учесть позицию сзади ± 1 стрип 	мин 0.1 макс 100 секунд V Поиск по HRecoil Поиск TOF
✓ Поиск гамма от 20 до 1000 КаВ ▼ Время корреляции мин 0 макс 10 мксек ∨ ∨	Поиск гамма

Рис. 6. Параметры поиска корреляционных совпадений между мгновенными альфа-частицами и гамма-квантами для изотопа ²⁵⁵Lr

Рис. 7. Слева: коррелированные альфа-линии. Справа: коррелированные гамма-линии

Таким образом, по полученным данным из пункта можно построить схему распада для 255 Lr в основное и возбужденные состояния дочернего изотопа 251 Md.

На рис. 8 верхней жирной линией показано изомерное состояние изотопа ²⁵⁵Lr с периодом полураспада $T_{1/2} = 2,6$ секунды, черной горизонтальной линией — основное состояние с периодом полураспада $T_{1/2} = 31,4$ секунды. Если изотоп ²⁵⁵Lr испустит альфа-частицу с энергией 8420 кэв, то соответствующий ей гамма-квант будет иметь энергию 110 кэв. Для реакции с ²⁰⁸Рb проходил поиск ядро отдачи — альфа и альфа—альфа корреляций между материнским и дочерним ядрами ²⁵⁴No-²⁵⁰Fm.

На рис. 9 показаны условия поиска корреляционных совпадений ядро отдачи — альфа для изотопа ²⁵⁴No. Для распада ²⁵⁴No велся поиск вре-

Для распада ²⁵⁴No велся поиск временного распределения коррелированных событий ядро отдачи — альфа. Энергетический диапазон был взят от 7950 до 8160 кэв. Временные условия составили 200 секунд, что соответствует четырем периодам полураспада ²⁵⁴No, взятых из табличных данных. Вестник Международного университета природы, общества и человека "Дубна". 2016. № 2(34) 49

Рис. 9. Параметры поиска корреляций ядро отдачи – альфа для изотопа ²⁵⁴No

Рис. 10. Слева: временное распределение коррелированных событий ядро отдача — альфа, для альфачастицы с энергией 7950—8160 кэв. Справа: коррелированная альфа-линия ²⁵⁴Noc энергией 8100 кэв

Среднее время жизни составило t = 88,5 секунд, соответственно период полураспада равен $T_{1/2} = 61$ секунде, что хорошо совпадает с табличными данными.

На рис. 11 показаны условия поиска альфа — альфа корреляций между $^{254}\rm{No-}^{250}\rm{Fm}.$

В окне «FirstFind» указывается энергетический диапазон в кэв, в котором лежат альфа-частицы, испущенные материнским ядром ²⁵⁴No. Указывается число альфачастиц, с которыми происходит поиск совпадений. В графе «разброс сзади» указываем 0 стрипов, чтобы исключить случайные события, которые могу плохо повлиять на результат корреляций. Должны учитываться позиции стрипов сзади. В окне «Alpha1» указывается диапазон энергий для альфа-частицы, испущенной дочерним ядром ²⁵⁰Fm. Время корреляции устанавливается порядка трех времен полу-

распада дочернего ядра. По табличным данным период полураспада 250 Fm составляет $T_{1/2} = 30$ минут.

Параметры поиска корреляций.	Параметры поиска корреляций.
First Find Alpha 1	First Find Alpha 1
Начать поиск с Диапозон значений Alpha Alpha от 8000 до 8300 КэВ	Разброс по фронту Диапозон значений Alpha ± 0 стрип от 7300 до 7500 КэВ 💌
Число альфа частиц	Время корреляции
Поиск Hecoll от О 🔿 до 1 文	мин 0 макс 100 минут 🗸
🗹 Только целые цепочки 🛛 Разброс сзади	
🗹 Учесть позицию сзади 🛛 ± 🕕 стрип	
Поиск гамма	Поиск гамма

Рис. 11. Параметры поиска корреляций альфа-альфа между ²⁵⁴No-²⁵⁰Fm

В ходе поиска совпадений получен коррелированный альфа-спектр и, используя значения временных корреляций, определен период полураспада ²⁵⁰Fm, показанный на рис. 12.

Среднее время жизни составило t = 1225 секунд, соответственно, период полураспада равен $T_{1/2}(^{250}\text{Fm}) = 14,5$ минут.

Рис. 12. Слева: временное распределение коррелированных событий альфа—альфа. Справа: коррелированные альфа-линии ²⁵⁰Fm и ²⁵⁴No

Рис. 13. Цепочка альфа-распада²⁵⁴No-²⁵⁰Fm

Поиск новых изотопов. Метод корреляций имеет важное применение. В случае, если имеется цепочка альфа-распада, которая начинается в неизвестной области, и ее изотопы с известными свойствами радиоактивного распада и число зарегистрированных распадов позволяет быть уверенным, что ни одно из звеньев цепочки не пропущено, тогда, используя метод корреляций, т.е. фиксируя известные ядра, можно получить сведения о первоначальном изотопе и проследить последовательность распадов по цепочке вверх. Вестник Международного университета природы, общества и человека "Дубна". 2016. № 2(34) 51

Библиографический список

1. Еремин, А. В. Первые экспериментальные тесты модернизированного сепаратора ВАСИ-ЛИСА / А.В. Еремин [и др.] // Письма в ЭЧАЯ. – 2015. – Т. 12, № 1.

2. Еремин, А. В. Экспериментальные тесты модернизированного сепаратора ВАСИЛИСА (*SHELS*) с использованием ускоренных ионов ⁵⁰Ti / А.В. Еремин [и др.] // Письма в ЭЧАЯ. – 2015. – Т. 12, № 1.

3. Hauschild, K. GABRIELA: A new detector array for \gamma-ray and conversion electron spectroscopy of transfermium elements / K. Hauschild [et. al.] // Nuclear Instruments and Methods in Physics Research A 560. – 2006. – P. 388–394.

4. Hessberger F.P. et. al. Z. Phys. A 359. – 1997. – P. 415–425.

5. Hessberger F.P. et. al. Z. Phys. A 322. – 1985. – P. 557–566.

Поступила в редакцию 15.08.2016