УДК 538.915

К. А. Воронин, Л. А. Сюракшина, П. П. Гладышев, В. Ю. Юшанхай

Электронная структура гибридных органо-неорганических перовскитов

Впервые сформулирована мультиорбитальная модель, описывающая универсальные электронные свойства широкого семейства галогенидных перовскитов ABX₃, где A = Cs, NH₄, CH₃NH₃; B=Sn, Pb; X=Cl, Br, I. Проведен теоретический анализ локальной электронной структуры и электронного зонного спектра отдельных представителей семейства.

Ключевые слова: электронная структура, мультиорбитальная модель, фотоэлектрические преобразователи, солнечные элементы, гибридные органо-неорганические перовскиты.

Об авторах

Воронин Кирилл Андреевич — аспирант кафедры химии, новых технологий и материалов Государственного университета «Дубна».

Гладышев Павел Павлович— доктор химических наук, профессор, заместитель заведующего кафедрой химии, новых технологий и материалов по научной работе Государственного университета «Дубна», главный научный сотрудник Центра высоких технологий ФГУП НИИ прикладной акустики.

Юшанхай Виктор Юлиевич— доктор физико-математических наук, ведущий научный сотрудник Лаборатории теоретической физики Объединенного института ядерных исследований, профессор кафедры теоретической физики Государственного университета «Дубна».

Сюракшина Людмила Александровна — кандидат физико-математических наук, старший научный сотрудник лаборатории информационных технологий Объединенного института ядерных исследований.

Построение электронной модели галогенидного перовскита *АВХ*₃ мы основываем на приближении сильной связи между атомными орбиталями элемента в позиции В (= Sn, Pb) и октаэдрически координированных с ним галогенами X = Cl, Br, I. Химическая связь в неорганическом остове перовскита, образованном октаэдрами ВХ₆ с общими вершинами по трем ортогональным направлениям, имеет ионно-ковалентный характер. В основном состоянии и в пределе ионной связи катион *B*²⁺ находится в электронной конфигурации ns^2np^0 (n=5 для Sn и n=6 для Pb), а анион X^{1-} — в конфигурации $n's^2n'p^6$ (n'=3,4,5 соответственно для Cl, Br, I). Модель ковалентной связи включает в себя s-, *p*- и *d*-орбитали элемента *B* и полный набор р-орбиталей галогенов, образующих σ- и πсвязи с орбиталями элемента В. Как неоднократно отмечалось в литературе [2-6], роль однозарядных сферических катионов Cs^+ , *NH*₄⁺ и полярных катионов метиламмония $[CH_3NH_3]^+$ в позициях A сводится, в основном, к стабилизации перовскитной решетки, а их заполненные и пустые электронные уровни далеко отстоят от энергетических полос, отвечающих валентной зоне и зоне проводимости.

Фиксация значений параметров модели, а именно, энергий є различных орбиталей, параметров гибридизации *t* различных пар соседних орбиталей основаны, вопервых, на общих принципах электронной теории [1] и, во-вторых, на представленных в литературе [2-6] результатах расчёта электронных зон в галогенидных перовскитах на основе современных методов теории функционала плотности (ТФП). Хорошо известно, что несмотря на свою плодотворность, методы ТФП имеют ряд существенных ограничений, связанных, в основном, с произволом в выборе аналитической формы обменно-корреляционных потенциалов при расчёте конкретных материалов. В этой связи, построение и исследование эвристических электронных моделей, подобных развиваемой в нашем исследовании, позволяют выявить многие детали электронной структуры, скрытые в ТФП вычислениях, но не-

[©] Воронин К. А., Сюракшина Л. А.,

Гладышев П. П., Юшанхай В. Ю., 2016

обходимые для анализа физических свойств конкретного материала.

Формулировка модели

На первом этапе рассмотрим перовскитную решетку с кубической точечной симметрией O_h . Именно такой симметрией обладает высокотемпературная фаза галогенидных перовскитов ABX_3 . Эффекты понижения симметрии решетки $O_h \rightarrow C_{4h}$ при переходе в тетрагональную фазу будут учтены на заключительном этапе расчетов зонного спектра.

Для каждого узла решетки \vec{l} можно выделить октаэдр лигандов X, расположенных в узлах $\bar{l} \pm \frac{\overline{a_x}}{2}$, $\bar{l} \pm \frac{\overline{a_y}}{2}$ и $\bar{l} \pm \frac{\overline{a_z}}{2}$, где $\overline{a_x}$, $\overline{a_y}$ и $\overline{a_z}$ — элементарные векторы трансляции. В каждой позиции X одну из трех *p*орбиталей следует рассматривать как оорбиталь, а две — как п-орбитали. Так, оорбитали $\left| p_x(\dot{i} \pm \frac{\vec{a_x}}{2}) \right\rangle$, $\left| p_y(\dot{i} \pm \frac{\vec{a_y}}{2}) \right\rangle$ и $\left| p_z(\dot{i} \pm \frac{\vec{a_z}}{2}) \right\rangle$ образуют о-связи с орбиталями $\left| S(\vec{l}) \right\rangle$ и $\left| P_\alpha(\vec{l}) \right\rangle$, где $\alpha = x, y, z$ соответственно. В качестве примера на рис. 1 показаны две оорбитали и четыре п-орбитали лигандов, гибридизированные с орбиталью $\left| P_x(\vec{l}) \right\rangle$ центрального атома.

Рис. 1. Репрезентативный пример орбитали $|P_{x,\bar{l}}\rangle$, образующей две σ связи с параметрами + t_{Pp} в направлении $\pm x$, и четыре π -связи с параметром – $t_{P\pi}$ в направлениях $\pm y$, $\pm z$

Приведенные выше аргументы позволяют сформулировать мультиорбитальную модель сильной связи в представлении вторичного квантования с использованием операторов рождения и уничтожения электронов в следующем виде (q — квазиимпульс, заданный в первой зоне Бриллюэна):

$$\begin{split} H &= \sum_{q} (H_o(q) + \sum_{ab} H_{hyb}(q)), \text{ где} \\ H_0 &= \varepsilon_S S_q^+ S_q + \varepsilon_P \sum_{\alpha} P_{\alpha}^+(q) P_{\alpha}(q) + \\ &+ \overline{\varepsilon}_P \sum_{\alpha} p_{\alpha}^+(q) p_{\alpha}(q) + \varepsilon_\pi \sum_{\alpha} \sum_{\beta \neq \alpha} \pi_{\beta}^{(\alpha)+}(q) \pi_{\beta}^{(\alpha)}(q) + \\ &+ \varepsilon_D (D_{xy}^+(q) D_{xy}(q) + D_{xz}^+(q) D_{xz}(q) + \\ &+ D_{yz}^+(q) D_{yz}(q)), \end{split}$$

$$H_{hyb} = 2it_{Sp} \sum_{\alpha} \sin \frac{q_{\alpha}}{2} S_{\alpha}^{+}(q) p_{\alpha}(q) +$$

$$+ 2t_{Pp} \sum_{\alpha} \cos \frac{q_{\alpha}}{2} P_{\alpha}^{+}(q) p_{\alpha}(q) -$$

$$- 2t_{pp}^{(-)} \sum_{\alpha} \sum_{\beta \neq \alpha} \sin \frac{q_{\alpha}}{2} \sin \frac{q_{\beta}}{2} p_{\alpha}^{+}(q) p_{\beta}(q) -$$

$$- 2t_{pp}^{(+)} \sum_{\alpha} \sum_{\beta \neq \alpha} \cos \frac{q_{\beta}}{2} p_{\alpha}^{+}(q) \pi_{\alpha}^{\beta}(q) +$$

$$+ 2t_{P\pi} \sum_{\alpha} \sum_{\beta \neq \alpha} \cos \frac{q_{\alpha}}{2} \cos \frac{q_{\beta}}{2} P_{\alpha}^{+}(q) \pi_{\alpha}^{\beta}(q) +$$

$$+ 2it_{pp}^{(-)} \sum_{\alpha} \sum_{\beta \neq \alpha} \sin \frac{q_{\alpha} + q_{\beta}}{2} (\pi_{\alpha}^{\beta^{+}}(q) \pi_{\beta}^{\alpha}(q)) +$$

+
$$2it_{d\pi}\sum_{\alpha}\sum_{\beta\neq\alpha}\sin\frac{q_{\alpha}}{2}(D^{+}_{\alpha\beta}(q)\pi^{\beta}_{\alpha}(q))+h.c.,$$

где $t_{pp}^{(-)} = \frac{1}{2} t_{pp}^{\sigma}$, $t_{pp}^{(+)} = \frac{3}{2} t_{pp}^{\sigma}$. Данная модель не учитывает спин-орбитальное взаимодействие (СОВ) в *p*- и *d*-оболочках атомов *Pb* и *Sn*.

Модельные вычисления и их сравнения с результатами ТФП

Далее представлены результаты расчета на основе этой модели электронного зонного спектра в CzSnI₃ и MaPbI₃. Результаты модельного расчета сравниваются со спектрами, представленными в литературе и полученными методами ТФП. В следующем разделе обсуждаются эффекты включения в модель спин-орбитального взаимодействия. На рис. 2, 3 показаны зонные спектры (без учета COB), полученные для CzSnI₃ соответственно методами ТФП и из модельных расчетов. Из сравнения следует, что модель воспроизводит результаты ТФП не только в основных чертах, но и во многих деталях.

Рис. 2. Теоретический зонный спектр (без учета COB), полученный методами ТФП для CzSnI₃ (адаптировно из [2])

Рис. 3. Расчетный зонный спектр (без учета СОВ) для CzSnI₃ с указанием орбитальной симметрии волновых функций электронных состояний в точке *R* зоны Бриллюэна

Данные расчета электронных зон для MaPbI₃, выполненные с учетом СОВ методами ТФП, представлены на рис. 4.

Рис. 4. Зонный спектр, полученный для MaPbI₃ методами теории функционала плотности с учетом СОВ (адаптировано из [3]). Нами установлена симметрия (тип представления Г) волновых функций электронных состояний в точке R зоны Бриллюэна и добавлен текстовый комментарий, указывающий на источники расщепления ветвей спектра (слабодисперсная ветка в области низких

энергий, ниже -6эВ, здесь не показана)

Рис. 5. Модельный (без учета СОВ) зонный спектр для MaPbI₃ с указанием симметрии волновых функций электронных состояний в точке *R* зоны Бриллюэна. В минимуме зоны проводимости состояния трехкратно вырождены

Таблица 1. Параметры модели, использованные для расчетов электронных зонных спектров (энергии орбиталей отсчитываются от уровня $\varepsilon_s = 0$)

	EP	ερ	επ	€D	tsp	<i>t</i> _{Pp}	t_{pp}^{σ}	$t_{P\pi}$	$t_{D\pi}$	λ
CzSnI ₃ (рис. 4)	9	7	6	11	2	0,6	0,3	0,15	1	0
MaPbI ₃ (рис. 6)	9,5	5,5	4	11	2,5	0,7	0,3	0,15	1	0
MaPbI ₃ (модель с учетом СОВ, рис. 6)	9,5	5,5	Ι	Ι	2,5	0,7	_	_	_	1,1

Эффекты спин-орбитального взаимодействия и тетрагонального искажения структуры решетки

Включение СОВ перепутывает спиновые и орбитальные степени свободы независимо в p и d оболочках Pb, так что новые электронные состояния этих оболочек строятся из базисных функций произведения двух представлений. Например, для р оболочки имеем $\Gamma_4^- \times \Gamma_6^+ = \Gamma_6^- + \Gamma_8^-$, где указано разложение произведения на два неприводимых представления в случае кубической симметрии. Набор базисных функций произведения $\Gamma_4^- \times \Gamma_6^+$ определяются $\left| P_{a}(\vec{l});\sigma \right\rangle = \left| P_{a}(\vec{l}) \right\rangle \cdot \left| X_{\sigma}(\frac{1}{2}) \right\rangle,$ где $\left| P_{a}(\vec{l}) \right\rangle$ как

определенные ранее орбитальные функции представления Γ_4^- , а $\left|X_{\sigma}(\frac{1}{2})\right\rangle$ — спиновые функции представления Γ_{6}^{+} . Тогда локальные базисные функции двумерного и четырехмерного представлений, соответственно Γ_6^- и Γ_8^- , находим стандартным способом

$$\begin{split} & \left| P_{l}(\frac{1}{2},\gamma) \right\rangle = \sum_{\sigma} \sum_{\alpha} \left| P_{\alpha,l};\sigma \right\rangle \left\langle \frac{1}{2} \sigma \Gamma_{4} \alpha \left| \Gamma_{6} \gamma \right\rangle, \\ \text{где } \gamma = \pm \frac{1}{2}, \text{ и} \\ & \left| Q_{l}(\frac{3}{2},\gamma) \right\rangle = \sum_{\sigma} \sum_{\alpha} \left| P_{\alpha,l};\sigma \right\rangle \left\langle \frac{1}{2} \sigma \Gamma_{4} \alpha \left| \Gamma_{8} \gamma \right\rangle, \\ \text{где } \gamma = \pm \frac{1}{2}, \pm \frac{3}{2}, \text{ и } \left\langle \frac{1}{2} \sigma \Gamma_{4} \alpha \left| \Gamma_{6,8} \gamma \right\rangle - \text{ ко-} \\ \text{эффициенты Клебша} - \Gamma \text{ордана кубической} \end{split}$$

группы O_h . Найденные функции диагонализуют гамильтониан СОВ $H_{so} = \lambda \vec{L}_l \vec{S}_l$ на каждом узле, так что состояния дублета $|P_l(\frac{1}{2}, \gamma)\rangle$ сдвигаются по энергии вниз на величину $-\lambda$, а состояния квартета $|Q_l(\frac{3}{2}, \gamma)\rangle$ — вверх на величину $+\lambda/2$.

Используя новые переменные и переходя от узельного к (квази)импульсному пространству, получаем, что размерность матрицы полного гамильтониана удваивается до 32. Диагонализация такой матрицы и расчёт зонного спектра не приводит к принципиальным трудностям. Анализ численных результатов позволяет сделать вывод о том, что включение СОВ приводит к а) значительному уменьшению ширины запрещенной зоны, б) существенной перестройке структуры зоны проводимости, но при этом в) слабо воздействует на электронные состояния внутри валентной зоны и г) практически не влияет на состояния у верхнего края валентной зоны. Причина такого слабого влияния СОВ на верхние валентные состояния производные от $p(\sigma)$ орбиталей лигандов

обусловлена ослаблением их связи с волновыми состояниями зоны проводимости

$$\left| P_{\vec{q}}(\frac{1}{2},\gamma) \right\rangle = \frac{1}{\sqrt{N}} \sum_{i} e^{i\vec{q}i} \left| P_{i}(\frac{1}{2},\gamma) \right\rangle$$

$$\left| Q_{\vec{q}}(\frac{3}{2},\gamma) \right\rangle = \frac{1}{\sqrt{N}} \sum_{i} e^{i\vec{q}i} \left| Q_{i}(\frac{3}{2},\gamma) \right\rangle$$

$$(1)$$

Вблизи *R* точки зоны Бриллюэна. Действительно $t_{Pp} \cos(\frac{q_{\alpha}}{2}) \rightarrow 0$ при $q_{\alpha} \rightarrow \pi$.

Перестройка структуры зоны проводимости может быть рассчитана с гамильтоновой матрицей в пространстве состояний редуцированным до размерности 14. Такое пространство состояний включает в себя два вектора $|S(q);\sigma\rangle$ и шесть векторов (1), производных от *S* и *p* орбиталей *Pb*, а также шесть векторов $|p_{\alpha}(q);\sigma\rangle$ ($\alpha = x,y,z$), производных от *p* состояний лигандов. Гамильтониан редуцированной модели имеет вид $H = H_0 + H_{hyb}$, где

$$\begin{split} H_{0} &= \varepsilon_{S} \sum_{q\sigma} S_{q\sigma}^{+} S_{q\sigma} + (\varepsilon_{P} - \lambda) \sum_{q\gamma} P_{q}^{+} (\frac{1}{2}, \gamma) P_{q} (\frac{1}{2}, \gamma) + (\varepsilon_{P} + \frac{\lambda}{2}) \sum_{q\gamma} Q_{q}^{+} (\frac{3}{2}, \gamma) Q_{q} (\frac{3}{2}, \gamma) + \varepsilon_{P} \sum_{\alpha} \sum_{q\sigma} p_{\alpha,q\sigma}^{+} P_{\alpha,q\sigma} P_{\alpha,q\sigma} + H_{hyb} = 2it_{Sp} \sum_{\alpha} \sum_{q\sigma} \sin(\frac{q_{\alpha}}{2}) S_{q\sigma}^{+} P_{\alpha,q\sigma} + 2t_{Pp} \sum_{q} \{\cos(\frac{q_{x}}{2}) p_{x,q\uparrow}^{+} [-\frac{1}{\sqrt{3}} P_{q} (\frac{1}{2}, -\frac{1}{2}) + \frac{1}{\sqrt{6}} Q_{q} (\frac{3}{2}, -\frac{1}{2}) + \frac{1}{\sqrt{2}} Q_{q} (\frac{3}{2}, \frac{3}{2})] + \\ &+ \cos(\frac{q_{x}}{2}) p_{x,q\downarrow}^{+} [-\frac{1}{\sqrt{3}} P_{q} (\frac{1}{2}, \frac{1}{2}) + \frac{1}{\sqrt{6}} Q_{q} (\frac{3}{2}, \frac{1}{2}) + \frac{1}{\sqrt{2}} Q_{q} (\frac{3}{2}, -\frac{3}{2})] + \cos(\frac{q_{y}}{2}) p_{y,q\uparrow}^{+} [\frac{i}{\sqrt{3}} P_{q} (\frac{1}{2}, -\frac{1}{2}) - \\ &- \frac{i}{\sqrt{6}} Q_{q} (\frac{3}{2}, -\frac{1}{2}) + \frac{i}{\sqrt{2}} Q_{q} (\frac{3}{2}, \frac{3}{2})] + \cos(\frac{q_{y}}{2}) p_{y,q\uparrow}^{+} [-\frac{i}{\sqrt{3}} P_{q} (\frac{1}{2}, \frac{1}{2}) + \frac{i}{\sqrt{6}} Q_{q} (\frac{3}{2}, -\frac{3}{2})] + \\ &+ \cos(\frac{q_{z}}{2}) p_{z,q\uparrow}^{+} [\frac{1}{\sqrt{3}} P_{q} (\frac{1}{2}, \frac{1}{2}) + \sqrt{\frac{2}{3}} Q_{q} (\frac{3}{2}, \frac{1}{2})] + \cos(\frac{q_{x}}{2}) p_{x,q\downarrow}^{+} [\frac{1}{\sqrt{3}} P_{q} (\frac{1}{2}, -\frac{1}{2}) + \sqrt{\frac{2}{3}} Q_{q} (\frac{3}{2}, -\frac{3}{2})] + h.c. \end{split}$$

На рис. 6 показан зонный спектр редуцированной модели, рассчитанный с параметрами $\varepsilon_S = 0$; $\varepsilon_P = 9.5$; $\varepsilon_p = 5.5$; $t_{Sp} = 2.5$; $t_{Pp} = 0.7$; $\lambda = 1.1$ эВ. Ранее вырожденная, при $\lambda = 0$, нижняя ветвь зоны проводимости расщепляется на нижнюю ветвь дублета и верхнюю ветвь квартета с относительным расстоянием $\approx 3/2\lambda$ между ними.

Отметим, что одноэлектронные состояния в точке R зоны Бриллюэна классифицируются по представлению точечной группы O_h как локальные состояния узлов B.

Рис. 6. Расчетный зонный спектр для редуцированной модели MaPbI₃ с учетом СОВ и указанием симметрии волновых функций электронных состояний в точке *R* зоны Бриллюэна

В отсутствии СОВ набор из шести исходных волновых функций с учетом спина $\sigma = \uparrow, \downarrow$ у дна зоны проводимости в точке $R = (\pi, \pi, \pi)$ определяется следующим образом ($\alpha = x, y, z$):

$$\left|P_{\alpha,R};\sigma\right\rangle = \frac{1}{\sqrt{N}}\sum_{i}(-1)^{\sum_{\beta}l_{\beta}}\left|P_{\alpha,l};\sigma\right\rangle$$

где суммирование ведется по узлам $\vec{l} = \sum_{\beta} l_{\beta} \vec{\alpha}_{\beta}$ кубической решетки, и эти состояния с энергией ϵ_P полностью вырождены. Спин-орбитальное взаимодействие $\lambda \sum_{l} \vec{L_l} \vec{S_l}$ расщепляет их на дублет $\left| P_{R}(\frac{1}{2}; j = \pm \frac{1}{2}, \pm \frac{3}{2}) \right\rangle$ с энергией ($\varepsilon_{P} - \lambda$) и квартет $\left| Q_{R}(\frac{3}{2}; j = \pm \frac{1}{2}, \pm \frac{3}{2}) \right\rangle$ с энергией ($\varepsilon_{P} + \lambda/2$), где $\lambda \approx 1.1$ эВ для Рb.

Волновые функции дублета и квартета преобразуются по представлениям, соответственно Γ_6^- и Γ_8^- , и выражаются через $|P_{\alpha,R};\sigma\rangle$ следующим образом (q=R):

$$\begin{aligned} \left| P_{R}(\frac{1}{2};\frac{1}{2}) \right\rangle &= \frac{1}{\sqrt{3}} \left| P_{x,R}; \downarrow \right\rangle - \frac{i}{\sqrt{3}} \left| P_{y,R}; \downarrow \right\rangle - \frac{1}{\sqrt{3}} \left| P_{z,R}; \uparrow \right\rangle, \\ \left| P_{R}(\frac{1}{2};-\frac{1}{2}) \right\rangle &= -\frac{1}{\sqrt{3}} \left| P_{x,R}; \uparrow \right\rangle - \frac{i}{\sqrt{3}} \left| P_{y,R}; \uparrow \right\rangle - \frac{1}{\sqrt{3}} \left| P_{z,R}; \downarrow \right\rangle, \\ \left| Q_{R}(\frac{3}{2};\frac{1}{2}) \right\rangle &= \frac{1}{\sqrt{6}} \left| P_{x,R}; \downarrow \right\rangle + \frac{i}{\sqrt{6}} \left| P_{y,R}; \downarrow \right\rangle + \sqrt{\frac{2}{3}} \left| P_{z,R}; \uparrow \right\rangle, \\ \left| Q_{R}(\frac{3}{2};-\frac{1}{2}) \right\rangle &= \frac{1}{\sqrt{6}} \left| P_{x,R}; \uparrow \right\rangle + \frac{i}{\sqrt{6}} \left| P_{y,R}; \uparrow \right\rangle + \sqrt{\frac{2}{3}} \left| P_{z,R}; \downarrow \right\rangle, \\ \left| Q_{R}(\frac{3}{2};\frac{3}{2}) \right\rangle &= \frac{1}{\sqrt{2}} \left| P_{x,R}; \uparrow \right\rangle - \frac{i}{\sqrt{2}} \left| P_{y,R}; \uparrow \right\rangle, \\ \left| Q_{R}(\frac{3}{2};\frac{3}{2}) \right\rangle &= \frac{1}{\sqrt{2}} \left| P_{x,R}; \downarrow \right\rangle + \frac{i}{\sqrt{2}} \left| P_{y,R}; \downarrow \right\rangle, \end{aligned}$$

$$(2)$$

Аналогично, набор исходных волновых функций у потолка валентной зоны в точке *R* определяется как

$$\left| p_{\alpha,R};\sigma \right\rangle = \frac{i}{\sqrt{N}} \sum_{l} (-1)^{\beta} \left| p_{\alpha,l+\frac{\alpha}{2}};\sigma \right\rangle.$$
(3)

Поскольку эти состояния преобразуются по чётному представлению, они не гибридизируют с (2), но гибридизируют с $|S_R;\sigma\rangle$ с параметром $\sim t_{Sp}$. Гибридизация снимает кубическое вырождение состояний (3) и расщепляет их на спиновый дублет $\Gamma_6^+ = \Gamma_1^+ \cdot \Gamma_6^+$ и квартет $\Gamma_8^+ = \Gamma_3^+ \cdot \Gamma_6^+$, волновые функции которых имеют вид

$$\begin{split} \left| \widetilde{\Psi}_{R}(\Gamma_{1}); \sigma \right\rangle &= \frac{1}{\sqrt{3}} \sum_{\alpha} \left| p_{\alpha,R}; \sigma \right\rangle \\ \left| \Psi_{R}(\Gamma_{3}, e_{1}); \sigma \right\rangle &= \frac{1}{\sqrt{6}} [2 \left| p_{z,R}; \sigma \right\rangle - \left| p_{x,R}; \sigma \right\rangle - \left| p_{y,R}; \sigma \right\rangle] \\ \left| \Psi_{R}(\Gamma_{3}, e_{2}); \sigma \right\rangle &= \frac{1}{\sqrt{2}} [\left| p_{x,R}; \sigma \right\rangle - \left| p_{y,R}; \sigma \right\rangle]. \end{split}$$

Квартетные состояния вырождены и лежат на энергии ε_p . Смешивание полностью симметричных орбиталей $|S_R\rangle$ и $|\tilde{\Psi}_R\rangle$ формирует волновое состояние в максимуме валентной зоны (представление Γ_6^+ на рис. 6) с энергией $\varepsilon_p + 3t_{sp}^2/\varepsilon_p$ и волновой функцией (рис. 7):

$$\left|\Psi_{R}(\Gamma_{1});\sigma\right\rangle = \alpha \left|\widetilde{\Psi}_{R}(\Gamma_{1});\sigma\right\rangle + \beta \left|S_{R};\sigma\right\rangle,$$

где $\beta \approx (1 + \frac{4}{3}(\frac{\varepsilon_{p}}{t_{sp}}))^{-\frac{1}{2}}$ и $\alpha = i\sqrt{1-\beta^{2}}$.

Было обнаружено, что характерные для локальной электронной структуры сдвиги электронных уровней, вызванные тетрагональными искажениями, заведомо меньше 0.1 эВ. Следует отметить, что понижение симметрии $O_h \rightarrow C_{4h}$ приводит к небольшому, <0.1 эВ, расщеплению квартетных уровней, Γ_8^+ и Γ_8^- , каждого на пару дублетных уровней. При этом крамерсовские дублеты, Γ_6^+ и

 Γ_6^- , сохраняют свою идентичность.

Общие выводы и перспективы применения модели. Оптическое поглощение в галогенидных перовскитах

Выше нами установлены, во-первых, зависимости ветвей зонного спектра от фундаментальных параметров электронной структуры (ε , t и λ), и, во-вторых, конкретные формы электронных волновых функций у краев валентной зоны и зоны проводимости. Подчеркнем, что полученные результаты имеют универсальный характер и применимы для широкого семейства галогенидных перовскитов *ABX*₃ (A = Cs, NH₄, CH₃NH₃; B = Sn, Pb; X = Cl, Br, I). Конкретная реализация модели для отдельных представителей семейства предполагает лишь количественные различия параметров (ε , t и λ). Такой подход позволит на следующем этапе нашего исследования осуществить сравнительный анализ физических свойств указанного семейства перовскитов. В этом плане важнейшей задачей является расчёт оптического поглощения. Ниже коротко приведены основные пункты такого расчёта.

Коэффициент оптического поглощения $\alpha(\omega)$ при переходах электрона между различными состояниями валентной (v) зоны и зоны проводимости (c) выражается следующим образом

$$\alpha(\omega) = \left(\frac{2\pi e}{m_0 c}\right)^2 \frac{c}{m_0 \sum_{v,c} \left[q\right]} \left| \left\langle \Psi_{\vec{q}}^{(v)} \right| \vec{\epsilon p} \left| \Psi_{\vec{q}}^{(c)} \right\rangle \right|^2 \delta(E_c(q) - E_v(q) - \hbar\omega), \qquad (4)$$

где v и c — комбинированные индексы из квантовых чисел, например сорта представления и номера его базисной орбитали, нумерующих ветви зонного спектра; $\vec{\epsilon}$ — вектор поляризации; \vec{p} — оператор импульса.

В частности, при фундаментальном поглощении вблизи краев зон получаем для матричного элемента

 $\langle \Psi_q^{(v)} | \vec{\varepsilon} \vec{p} | \Psi_q^{(c)} \rangle \approx \langle \Psi_R(\Gamma_1); \sigma | \vec{\varepsilon} \vec{p} | P_R(\frac{1}{2}, j) \rangle$, (5) и суммирование по *v*, *c* в выражении (4) означает суммирование по $\sigma = \uparrow, \downarrow$ и $j = \pm \frac{1}{2}$. Оценка матричного элемента дипольного перехода при стандартной аппроксимации (5) позволяет свести описание $\alpha(\omega)$ у края фундаментального поглощения к расчёту комбинированной плотности состояний $J_{vc}(\omega)$, так что

$$\alpha(\omega) \sim J_{vc}(\omega) \sum_{\sigma} \sum_{j} \left| \left\langle \Psi_{R}(\Gamma_{1}); \sigma \middle| \widetilde{\varepsilon p} \middle| P_{R}(\frac{1}{2}, j) \right\rangle \right|^{2}.$$

Отметим также, что развитый здесь подход будет также обобщен и применен к

анализу электронных состояний и оптического поглощения в широкой области \vec{q} пространства за пределами R точки зоны Бриллюэна.

Работа выполнена при поддержке РФФИ в рамках проекта №14-43-03544.

Библиографический список

1. Харрисон, У. Электронная структура твердых тел / У. Харрисон. — Москва : Мир, 1983.

2. Borriello I., Cantele G., Ninno D. // Phys. Rev. B 77. — 2008. — P. 235214.

3. Brivio F., Butler K.T., Walsh A. // Phys. Rev. B 89. — 2004. — P. 155204.

4. Brivio F., Walker A.B., Walsh A. // APL Mater. — 2013. — № 1. — P. 042111.

5. Even J., Pedesseau L., Jancu J.-M., Katan C. J. // Phys. Chem. Lett. — 2013. — № 4. — P. 2999.

6. Giorgi G., Fujisawa J.-I., Segawa H., Yamashita K. J. // Phys. Chem. Lett. — 2013. — N_{2} 4. — P. 4213.

Поступила в редакцию 25.03.2016