УДК 550.834.015.24

А. Э. Сиренко, Ю. В. Махнев, Ю. В. Яблокова, О. Л. Кузнецов

Оценка литологии донных отложений по спектрам широкополосных акустических сигналов

Описан метод определения литологии донных осадков по характеристикам отраженных широкополосных акустических сигналов путем сравнения теоретических и экспериментальных спектров. Ключевые слова: акустика морской среды, волновод, литология донных осадков, передаточная

функция среды.

Об авторах

Сиренко Анна Эркиновна – аспирант кафедры общей и прикладной геофизики государственного университета «Дубна», младший научный сотрудник АО «НИИ «Атолл». *E-mail:* Sirenko.ann@yandex.ru. Московская обл., г. Дубна, ул. Энтузиастов, 3А, кв. 212.

Махнев Юрий Владимирович – аспирант кафедры персональной электроники государственного университета «Дубна», научный сотрудник АО «НИИ «Атолл». *E-mail:* vipkozlice@yandex.ru.

Яблокова Юлия Викторовна – инженер АО «НИИ «Атолл». E-mail: yulia.yablockowa@yandex.ru.

Кузнецов Олег Леонидович – доктор технических наук, профессор, Президент РАЕН, Президент государственного университета «Дубна», заведующий кафедрой общей и прикладной геофизики государственного университета «Дубна». *E-mail:* olk@uni-dubna.ru.

Оценка литологии и геологического строения донных отложений акваторий является актуальным направлением исследований экологической и морской геофизики особенно при строительстве подводных сооружений, прокладке нефтегазопроводов.

Литологическая оценка дна по характеристикам акустического поля будет зависеть от выбранной модели волновода и геологической среды (теоретическая модель), а также особенностей проведения натурного эксперимента (уровень шумов, аппаратурных помех и т.п.). В данной работе рассчитан теоретический спектр отраженного сигнала и сделан сравнительный анализ с экспериментальными результатами, основываясь на методике, приведенной в работах [1; 2]. Однако, в отличие от описанных экспериментов в Баренцевом море, результаты, приведенные в данной статье, были получены в условиях мелкого моря: с глубинами акватории до 18 м и расстояниями источник-приемник не более 1 км. Другим принципиальным отличием является методика регистрации акустических сигналов: в качестве приемной линии использовалась донная 24канальная сейсмокоса протяженностью 500 м.

Суть предлагаемой авторами [1; 2] ме-

тодики заключалась в сравнении спектра зарегидрофонами гистрированных сигналов (по сути, передаточной функции среды) с теоретической передаточной функцией (для заранее выбранной модели волновода) и подборе таких параметров модели дна (коэффициента затухания α и коэффициента объемного рассеяния В, скорости продольных волн с и плотности грунта р), которые бы обеспечивали наилучшее согласие теоретической модели и реальных данных [1].

Постановка эксперимента

Экспериментальные результаты для данной работы были получены в ходе испытания спаркера АО «НИИ «Атолл» на Иваньковском водохранилище (г. Дубна). Схема эксперимента показана на рис. 1.

Электроискровой источник (спаркер) возбуждал широкополосные сигналы в пределах 200–5000 Гц. Акустическое поле регистрировалось 24 приемными гидрофонами донной косы № 1, оцифровка и запись на персональный компьютер производилась при помощи устройства ввода-вывода данных.

Исходя из соотношения сигнал/шум, наилучшее качество принимаемых сигналов наблюдалось на гидрофоне № 7 (см. рис. 1), поэтому в качестве экспериментальных результатов приводятся временные выборки и амплитудные спектры с данного гидрофона.

[©] Сиренко А. Э., Махнев Ю. В., Яблокова Ю. В., Кузнецов О. Л., 2018

Рис. 1. Схема эксперимента

Теоретическая модель

Теоретическая модель представляет передаточную функцию среды – спектр сигнала. В расчете передаточной характеристики звуковое поле представляется в виде суммы нормальных волн [1]:

$$p(z,r) = \sum_{n}^{N} \frac{\psi_n(z)\psi_n(z_s)}{\sqrt{\xi_n r}} \ell^{(i\xi_n r)}, \qquad (1)$$

где N – число учитываемых мод; z и z_s – глубины приемника и источника звука; r – расстояние до приемника; ξ_n – собственные значения; ψ_n – собственные функции задачи Штурма – Лиувилля:

$$\frac{d^2 \Psi_n(z)}{dz^2} + \left\{ \left[\frac{\omega}{c(z)} \right]^2 - \xi_n^2 \right\} \Psi_n(z) = 0.$$
 (2)

С граничными условиями: $\psi_n(0) = 0$,

 $\psi_n(H) + g_n \frac{d\psi_n(H)}{dz} = 0, \quad g_n -$ комплексный импеданс дна:

$$g_n = \frac{m}{\sqrt{\xi_n^2 - k_1^2}},$$
 (3)

где $m = \frac{\rho_1}{\rho}, \quad k_1 = \frac{\omega}{c_1(H)} n_1(1+i\alpha), \quad n_1 - \text{показа-}$

тель преломления дна; $n_1 = \frac{c(H)}{c_1}$, ρ , c и ρ_1 ,

*c*₁ – плотность, скорость звука в воде и грунте соответственно.

Число мод *N* вычисляется по формуле:

$$N = \left[\frac{1}{2} + \frac{H\omega}{\pi} \sqrt{\frac{1}{c^{2}(H)} - \frac{1}{c_{1}^{2}}}\right].$$
 (4)

N = 2 для условий эксперимента: H = 10 м, $\omega = 200$ Гц, c(H) = 1481 м/с и параметре модели донного грунта $c_1 = 1550$ м/с.

Обработка экспериментальных результатов

Для расчета экспериментального спектра был взят сигнал с гидрофона № 7 (рис. 2).

Рис. 2. Сигнал с гидрофона № 7 до обработки

Предварительно к сигналу были применены процедуры обработки: полосовая фильтрация для подавления низкочастотных помех, а также вейвлет-фильтрация для подавления случайных помех и шумов моря. Результат обработки приведен на рис. 3.

Рис. 3. Сигнал с гидрофона № 7 после обработки

По записям с контрольного гидрофона (рис. 4) видно, что основная энергия сигнала сосредоточена в полосе частот 200–5000 Гц, а максимум наблюдается на 1000–1200 Гц. Из этого можно сделать вывод о целесообразности обработки в диапазоне частот, где наблюдается пиковое значение энергии сигнала. К сожалению, частота дискретизации блока регистрации донной линии (2000 Гц) ограничивает полосу частот до 1000 Гц (рис. 5).

Рис. 4. Временная выборка и спектр сигнала с контрольного гидрофона

Рис. 5. Спектр сигнала с гидрофона № 7

К экспериментальному спектру был применен полосовой фильтр и сглаживающее окно. Результат представлен на рис. 6.

Рис. 6. Спектр после обработки

Анализ полученных результатов Далее по формулам (1) – (4) вычисляется теоретическая модель p(z, r), затем по алгоритму БПФ – его спектр. Результат совмещения теоретического и экспериментального спектров приведен на рис. 7.

Рис. 7. Экспериментальный (пунктир) и теоретический (сплошная линия) спектр сигналов

На рис. 7 видно, что амплитуды теоретического и экспериментального спектров отличаются, однако основные минимумы и максимумы совпадают. Такое расхождение экспериментального и теоретического спектров по амплитудам может объясняться случайной неоднородностью среды. Положения минимумов и максимумов в спектре зависят от значений c и ρ , по которым косвенно можно оценить литологию донных отложений. Таким образом, подбирая параметры модели, а именно скорость звука в осадках и плотность, которые используются в уравнении (2), и сравнивая ее с реальными спектрами сигналов, можно оценить литологию донных осадков. Наилучшее совпадение теоретической модели с данными эксперимента было достигнуто при $\rho = 1.8 \ \text{г/см}^3$, $c = 1541 \ \text{м/c}$. Такие параметры соответствуют слабо консолидированным осадкам – илам и пескам, что соответствует данным пробоотбора в нескольких точках изучаемой территории.

Библиографический список

1. Акустика дна океана / Е.М. Ховем, Г.Х. Циим, М.Х. Мангнани [и др.]; под ред. У. Купермана, Ф. Енсена; пер. с англ. Э.В. Житковский, А.Ю. Захлестина. – М.: Мир, 1984. – 454 с.

2. Григорьев, В. А. Определение поглощающих и рассеивающих свойств дна в мелком море по спектрам широкополосных сигналов / В.А. Григорьев, Б.Г. Кацнельсон // Акустический журнал. – 2001. – Т. 47, № 3. – С. 330–335.

3. Григорьев, В. А. Определение эффективных параметров дна мелкого моря по спектрам широкополосных акустических сигналов в условиях гидродинамической изменчивости / В.А. Григорьев, Б.Г. Кацнельсон, J.F. Lynch // Акустический журнал. – 2016. – № 3. – С. 330–340.

4. Клей, К. Акустическая океанография. Основы и применения / К. Клей, Г. Медвин. – М. : Мир, 1980. – 584 с.

5. Таранов, Э. С. Гидроакустические измерения в океанологии / Э.С. Таранов, А.М. Тюрин, А.П. Сташкевич. – Л. : ГИДРОМЕТЕОИЗДАТ, 1972. – 324 с.

Поступила в редакцию 06.12.2018